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Abstract Monocular depth estimation (MDE) in computer vision is the process of generating a depth
map from a single 2-D image. This task is far from trivial since a 2-D image can be created from an infinite
number of 3-D scenes. Fortunately, for many images captured in the real-world it is quite clear what the
approximate depth is, and many MDE methods exist that produce results close to the ground truth. A
depth map for an image has many use-cases, including the anonymisation of video material. Humans and
some other animals can also get an idea about the depth of what they are observing when using only a single
eye, for this they use so-called biological cues. An examples of these cues are the size of the observed objects
and linear perspective. This work focuses on using prior knowledge about these biological cues to extract
related information, which is used as extra input for an MDE. The goals are to determine the effect of these
explicitly extracted cues on an MDE and to find out whether these explicit cues can be learned by an MDE
instead, so that they are used implicitly. As a secondary contribution, a new data set containing RGB-depth
image pairs is to be created.
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Chapter 1

Introduction

This chapter describes the motivation for this study, as well as the research questions and requirements based
on the motivation, and finally, a detailed description of biological cues, i.e. cues that are used by humans
and/or other animals for depth estimation or monocular depth estimation (MDE) specifically. Chapter 2
provides a review of literature that is relevant to this study. For Chapter 3, initial experimentation has been
done and the results are discussed for the extraction of biological cues. Chapter 4 describes the proposed
method of the study, as well as the data sets and experiments that are needed to help answer the research
questions using the method. Finally, Chapter 5 describes the planning.

1.1 Motivation

Video anonymisation is a useful tool for removing any private information from videos. An anonymised
video can be stored, analysed and processed without being in conflict with any privacy regulation. Most
anonymisation methods involve manipulating the original video in such a way so that no private information
remains, an example is the blurring of faces. The problem with these kinds of methods is that when there
is only a single object in a single frame that is not correctly recognised, and therefore not manipulated,
the complete video is not anonymised anymore and it cannot be used. The longer a video, the greater the
possibility that such a false negative occurs.

An alternative would be to reconstruct videos using default 3D objects. The advantage of this over the
former would be that when a misrecognition occurs, the reconstruction might lose some accuracy but no
private information is compromised in the result. Conde Moreno provided such a method [9]. This method
can be summarised into the following steps:

1. Object detection per frame

2. Object tracking across frames

3. Depth estimation

4. Camera self-calibration

5. Object 3D location estimation (using steps 3 and 4)

6. Object trajectory smoothing (using steps 2 and 5)

7. 3D reconstruction using default 3D models

While most of these steps perform well on the used data set, the depth estimation performs quite poorly
and can be seen as the bottleneck of the method. Al-jibouri provided an improvement for this step using
a conditional Generative Adversarial Network (cGAN) [1]. This method shows promising results, but these
results are still worse than the results of other methods (that used more data).
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Because of these issues, it would be beneficial to improve upon this method. While simply adding more
training data could improve the results, it might also be possible to improve the depth estimation on the
same amount of training data by utilising prior knowledge. Humans and some animals utilise biological cues
when estimating depth with a single eye, such as the size of objects and linear perspective (these cues are
described in Section 1.3).

A neural network with enough capacity might be able to learn similar steps for producing a depth map.
However, this could become quite complex: for example, learning about the size of many different objects
using only unannotated images is far from trivial. While not impossible, this would likely require a lot more
data than might be necessary. Therefore, alternatively, the known biological cues can be extracted from
each image so that they can be used explicitly by the MDE system. In fact, Auty and Mikolajczyk have
shown that explicitly providing the size of objects as extra input data using language models increases the
performance of an MDE system [2].

A thorough search of the relevant literature has not yielded any work where any of the other biological
cues have been used in a similar way. Therefore, there is novelty in studying the effect of explicitly using
other biological cues, as well as using combinations of these cues. Besides that, Auty and Mikolajczyk did
not compare a model without cues against one with cues for varying amounts of training data, so there is
novelty in doing so as well. Although this last part might be challenging, since a lot of data with ground truth
depth maps is required, it can help in determining two things. First, how much more efficient a model with
cues is, by comparing the amount of training data at which performance between both systems is similar.
Second, whether the model without cues is eventually able to match or even outperform its counterpart,
which would indicate that similar steps to these biological cues are used by that model. Such an experiment
could provide an interesting angle to the research.

1.2 Research Questions and Requirements

Research Questions The motivation describes the research that is to be done in this work, which leads
to the following research questions:

• RQ1: How does the inclusion of biological cues affect the performance of an MDE system?

• RQ2: How does an MDE that utilises biological cues compare against the state-of-the-art?

• RQ3: How does the inclusion of biological cues affect the efficiency of an MDE in terms of training
data?

• RQ4: How does the inclusion of biological cues affect the performance of an MDE for increasing
amounts of training data?

Requirements As described in the motivation a lot of labelled data is required. To ensure enough available
data can be used the following functional requirements are in place for the system:

• Should work for various image sizes

• Should work for a static single-camera set-up

• Should work for existing footage, so there is no control over camera movement or focal length

1.3 Biological Cues

This Section describes the biological cues that are used by humans and/or some animals to estimate depth.
Besides that, it is described if and how these cues can be extracted from an image (or from a range of video
frames) to be used as explicit input data for a depth estimation system.



(a) Linear Perspective (b) Foreshortening (c) Texture Gradient (d) Blur

(e) Motion Parallax (f) Overlapping (g) Light Scattering (h) Shading

Figure 1.1: Examples of different biological cues.

Binocular Vision The main depth cue that is used by humans is binocular vision. Since both eyes observe
an object from a different position, a disparity exists between both observations of this object. A human
can (intuitively) determine this approximate disparity which enables the sensation of depth [26].

A computer can approximate the same for an image pair captured- by a dual camera set-up. A pixel
in one image can be matched to its corresponding pixel in the other image using a number of different
techniques, an example is the method of Žbontar and LeCun [34]. Such a matching can be used to generate
the disparity for every pixel. This, in combination with the relative orientation and distance of both cameras
can then be used to estimate the depth in an image [27]. However, the required dual camera set-up does not
align with the requirements.

Alternatively, when a single camera is moving and this movement can be tracked, then two frames could
simulate a binocular vision system. Unfortunately, this would not work well for moving objects (people)
and it would not work at all for a static camera set-up. Both of these are desired for this depth estimation
system.

Another possibility might be to synthesise binocular image pairs from a single monocular image. Boer
synthesised such binocular image pairs, but this method is not desirable, the reasons for which are stated in
the literature review (Chapter 2) on Boer’s thesis [4].

Object Size Besides binocular vision, there are other ways a person can get an idea about the depth of
imagery they are observing. A good example of this is the size of observed objects. If multiple objects of
the same type (for which it is known they are about the same size, for example, a collection of cars or a
collection of people) are visible, and there is a clear difference in observed size, one can determine that the
objects that look smaller are further away than the corresponding objects that look bigger, this will be called
relative size. Additionally, an object of which the approximate real-world size is known can also guide the
observer in estimating its depth, this will be called known size.

For a computer to extract this information an object recognition system can be used. Then, for each
recognised object the observed position and size, as well as its class are determined. Having multiple objects
in the same class already seems like sufficient explicit information for the relative size cue. Additionally, the
mapping of a class to a known default real-world size provides sufficient explicit information for the known
size cue as well.



Linear Perspective Another monocular depth cue is that of linear perspective. Lines that are parallel
in the real world converge to a single vanishing point at the horizon when seen from a camera or eye. For
an object consisting of parallel lines, the linear perspective cue tells what part of the object is closer to the
camera and which part is further away. An example of an object that often consists of parallel lines is a
building [25]. A visual representation of linear perspective can be found in Figure 1.1a. See Section 3.1 for
a description of how a computer can extract this information.

Foreshortening This converging also applies to objects that do not contain parallel lines, for example
when a person reaches their hand out to a camera, it is observed to be larger than the rest of their body, this
effect is called foreshortening. Ivanov et al. showed that foreshortening can be used to determine the degree
to which an object converges [19]. In Figure 1.1b the snout of the (right) cow is pointed at the camera,
which makes it appear larger relative to the rest of its body, especially relative to its hind legs. Furthermore,
there is a difference in size between its front and hind legs. Such cues can guide a human in determining the
relative distance of each body part of the cow.

Observing this requires a lot of knowledge about any observed object and it might prove to be difficult
to extract useful explicit information related to this effect. One possibility might be to recognise parts of an
object (for example: hands of a human) as separate objects which can then be used by the same techniques
that are used for extracting the object size.

Blur An eye or camera has a focal point. Objects closer to this point are perceived to be sharper than
objects farther away from it, and the farther away an object is from this point, the more blurry it seems. In
Figure 1.1d the focal point of the camera is near the woman and the tree she is leaning against, while the
rest of the image is much farther away from it. The result is that the woman and the tree are much sharper
than the rest of the image. A blur (or sharpness) map generated from the image could therefore provide
useful information about the approximate relative distance of each part of the image [22].

The algorithm from Golestaneh and Karam produces exactly that: for each pixel, it takes a surrounding
patch from the image and uses the magnitudes of high frequency waves extracted from the patch to determine
as sharpness score for the pixel [16]. This algorithm is further discussed in Section 3.2.

Texture Gradient When an image includes a uniform texture gradient, a brick road for example, the
coarseness of the texture can be used as a depth cue. As can be seen in Figure 1.1c, the grass is much more
coarse and defined the closer it is to the observer, while the individual blades of grass unify into a single
solid color the farther away they are from the observer [25].

To extract the coarseness from an image, the same algorithm used for the blur map can be used [16]. If
there is a clear texture gradient present in an image, then the parts of it that are closer to the camera should
receive a greater sharpness value than the parts that are farther away.

Accommodation In accommodation, the shape of the lens in an eye is altered in order to change the
eye’s focal length, during the observation of an object. Observing which (parts of) objects are in focus for
each focal length can be used to estimate the relative distance. However, accommodation only works well
for distances less than 2 meters [25]. Owls have been observed to use accommodation as a depth cue when
viewing with a single eye [32].

This accommodation process of the eye could be replicated by a camera system. However, this would
not align with the requirements. Alternatively, a collection of images with different focal lengths could be
synthesised from a single image, but a system that performs this would require implicit depth knowledge,
as well as the sharpening of blurred objects. The former would not make sense since it would require depth
knowledge to later estimate the depth, and the latter is quite impractical as well.

Motion Parallax Humans and animals do not observe a static world. Objects in this world are moving.
When these are moving in the same direction and at the same speed, objects closer to the observer seem to
move faster. This works best for a moving observer that observes static objects, like in Figure 1.1e, where
the bushes closer to the camera appear to move much faster than the trees in the background, which is
visible in the image in the form of motion blur.



To incorporate motion parallax into a depth estimation system, one could simply add multiple frames of a
video as input. Alternatively, an object recognition algorithm could track certain objects over several frames
and this recorded movement could be used a explicit input data. However, since the system is required to
work for a static camera set-up, it is not given that certain objects are supposed to move at the same speed
and in the same direction, which would be required for the extracted data to be useful.

Overlapping If one object partly occludes another object, a human knows that the former is closer. In
Figure 1.1f each cylinder except one is occluded by at least one other cylinder. Because of this, an observer
can know that each cylinder has a smaller distance to the camera than the cylinders that it obscures. An
object recognition system could extract this information, which can be used to determine which group of
pixels are sure to be closer to the camera than another group of pixels.

Light Scattering When light from the sun hits the earth, some of it is scattered by molecules in the air.
Some of this light gets directed towards a viewer observing an outdoor scene. When an object is very close
to the viewer, by far most of the light observed is reflected from the object. The farther away an object is,
the higher the probability that this scattered light is observed as well. This has the effect that the object’s
colour appears to be more similar to the colour of the sky. One could view it as the object being placed
before the sky, and its opacity decreasing the further away it is from the viewer. An example of this effect
would be mountain that is placed further away than other mountains which seems much bluer (Figure 1.1g).
This information can be used a depth cue [10].

A computer could extract these cues from an image, by first recognizing the sky and its (average) colour.
Afterwards, the image can be grouped into parts based on colour. Each group and its colour, as well as the
colour of the sky, can then be used as explicit information for a depth estimation system. However, this
method would also be prone to false positives, for example, any blue object would likely be recognised to
be further away then it is. Combining this cue with other cues, such as overlapping, might improve results.
Another issue, is that Al-jibouri’s method uses a depth mask, so that the sky but also objects that are
far away, like mountains, are discarded. Using this mask significantly improved the depth estimation [1].
Therefore, it would be desirable to incorporate a similar step for this project. Since light scattering has
the greatest effect on far away objects, a trade-off between incorporating a depth mask and light scattering
might have to be made.

Shading The shading of an object in an image provides useful information about its three-dimensional
shape. In Figure 1.1f and Figure 1.1h the objects are in the shape of a cylinder. Due to the lighting, there
is a visible gradient that gets darker the closer to the edge of the objects. This can guide an observer in
understanding the 3D shape of an object, which can be used to determine the relative distance of each part
of the object. Granrud et al. have shown that while 5-month-old infants do not use this cue, 7-month-old
infants do [17].

Unfortunately, specific light conditions are required and the effect is only useful within an object, so
extracting and using explicit shading information might be prone to errors and otherwise have no significant
effect on the depth estimation.

Conclusion For many of the previously described biological cues, it is the case that they do not align
with the requirements for the input data, or that their extraction is deemed impractical. The cues that
will be further explored and for which an extraction system is/will be implemented are object size, linear
perspective, blur and overlapping. As mentioned before, the extracted information related to object size
and blur can also partly cover foreshortening and texture gradient respectively.



Chapter 2

Literature Review

This chapter is a review of the relevant literature, structured in the following segments: data sets, disparity,
end-to-end MDE, cGAN methods and biologically inspired work. Additionally, a short conclusion is given.

Data sets To allow for the training and the evaluation of (M)DE systems, data sets containing RGB-depth
pairs are needed. Saxena et al. provided such a data set, in which multiple scenes are recorded using both
a standard camera and a laser scanner for the ground truth depth map [28]. Silberman et al. provided
another data set, which is known as NYU Depth [29]. This data set contains 1149 of these RGB-depth pairs
captured from 464 diverse indoor scenes, using a Kinect camera. Geiger et al. recorded traffic scenarios
using multiple sensors, including stereo cameras and 3D laser scanners. Therefore, the resulting KITTI data
set contains binocular RGB image pairs, paired with data, and consequently also monocular RGB-depth
pairs. Because the recordings are from traffic scenarios, the data set consists of outdoor scenes. Eigen et al.
proposed a specific train/test split for these last two data sets [11]. Mayer et al. provided another data set,
which contains over 35000 synthesised stereo image pairs with a ground truth disparity [23]. As mentioned
in Section 1.3, from the disparity the depth can be determined, which combined with either image from an
image pair can form the desired RGB-depth pair. The data set from [8] includes over 20000 RGBD images
of human poses recorded using a Kinect sensor [8]. However, due to the limited amount of scenes and actors,
four and five respectively, only a limited amount of this data set can be used for training, otherwise, an MDE
would likely be overfitted on those scenes.

Disparity When binocular image pairs are present, depth estimation essentially becomes a matching task:
every pixel from one image should be matched. When each pixel from one is matched to a pixel in the other
image, the pixel disparity can be determined, after which, estimating the depth map is a trivial process, as
mentioned before (Section 1.3). Žbontar and LeCun provides such a method, it uses a CNN to determine
the matching distance between two patches (one from each input image) to match pixels and eventually
determine a disparity map [34].

Instead of explicitly matching pixels, end-to-end solutions exist that take a binocular image pair as input
and output a disparity map directly. Godard et al. devised such a method. It uses a CNN that takes one
image as input and produces both the left-right and right-left disparity maps. Using both of these disparity
maps the left image can be reconstructed from the right image and vice versa. The differences between the
input images and their reconstructed counterparts make up the cost function of the network, which leads
to improvement of the disparity estimation during training. A depth map can be determined using either
disparity map. Because this method only takes one image as input, it can be used to estimate depth for
monocular images as well, although image pairs are still needed for training. The method does show plausible
results for unseen data [15].

DispNet is another example of an end-to-end disparity estimation system. It consists of a CNN, modified
from FlowNet, which is a network that uses a correlation layer to estimate optical flow between two images
[12]. The modifications made for DispNet allow for the estimation of disparity instead [23].

The main disadvantage of disparity methods is that binocular image pairs are required, which is not in
line with the requirements (Section 1.1) for this work. While the method of Godard et al. is able to produce
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results for unseen monocular image data, it did not perform well in the work of Conde Moreno [9], and a
method that can be trained on monocular images is likely to perform better.

End-to-end MDE Instead of estimating the disparity from an image pair (or a single image), there are
methods for generating depth from an RGB image directly. One way is to group neighbouring pixels into
so-called ‘superpixels’ of which the 3D orientation can be estimated so that the combined orientation of all
superpixels can be used to create a depth map for the input image. This is what the method from Saxena
et al. does, however it does not perform well compared to later work [28].

In this later work, the focus lies on training a neural network on RGB-depth pairs directly. Such a
network takes an RGB image as input and produces a depth map of the same resolution, the differences
between this produced depth map and the ground truth depth map make up the cost function that ensures
improvement of the depth map estimation.

Eigen et al. provided such a method, in particular one that uses two CNNs. The first CNN generates a
complete depth map for a low-resolution version of the input image, while the second CNN takes both this
depth map and a smaller patch of the input image as input. The details in this patch, like wall edges, should
improve upon the original fine depth estimation. While the method outperformed older methods that only
acted as a baseline, the method is not compared to other methods. Luckily, this issue is overcome by the
fact that the train/test split from this work is used by later work as well, which allows for comparison [11].

The method from Laina et al. uses a fully convolutional architecture. This method has better performance
compared to the method from Eigen et al. for every metric except for one, for which the performance is equal
[21].

Bhat et al. provided a method where an image is encoded using the EfficientNet CNN [31]. The encoding
is decoded into a feature map for every pixel position, which is fed into another CNN which produces the
final depth map. This method outperforms both the method from Laina et al. and the one from Eigen et al.
for every metric used [3].

cGAN Methods A cGAN consists of two networks: a generator and a discriminator. The generator works
similarly to the previous methods, the discriminator receives both a true depth map and one generated from
the corresponding image by the generator and its task is to determine which is which. The cost function has
to goal to ensure that while the discriminator gets better at distinguishing true depth maps and generated
ones, the generator gets better at creating depth maps.

Zhang et al. and Chen et al. both provided such a method, and both outperform the method from Laina
et al., and consequently, the method from Eigen et al. in every metric used [33, 7]. Similarly, for their thesis,
Al-jibouri used a cGAN to estimate depth, however in this case the used method was not able to get better
results than Eigen et al., but it is noteworthy that the latter is trained on more data. The use of more data
might further improve the performance of this method [1]. The thesis of Al-jibouri is also the work from
which this study directly follows.

Alternatively, a cGAN could also be used to generate binocular image pairs from a single image. These
pairs can then be used in a disparity method, to finally estimate the depth. However, as described before,
estimating this disparity is not a trivial process and can be prone to errors. Therefore, compared to estimating
disparity or depth directly, first converting single images to a stereo image pair and then estimating depth
only seems like a way to increase noise. Boer provided such a method. While this work showed that such a
method can be used to estimate depth, it was indeed not able to outperform the state-of-the-art [4].

Biologically Inspired Work Most previous biologically inspired computer vision work is focused on
replicating the behaviour of certain cells, with the goal of achieving similar functionality to the observed
functionality of those cells. This idea is similar to what led to the invention of the perceptron [24], which
was inspired by the behaviour of a single neuron and formed the basis for neural networks.

Similarly, it has been suggested that simple cells in the visual cortex can be modelled by 2-D Gabor
filters [13]. Furthermore, convolutional kernels learned by the first convolutional layer of a CNN trained on
pictures seem to resemble such Gabor filters [20]. This would explain the use of CNNs in computer vision
tasks, the popularity of which is emphasised by the fact that much of the previously described work makes
use of CNNs.



However, regular CNNs still have limitations, an example of which is their robustness against unseen noise.
Strisciuglio et al. created a new layer for CNNs, which is inspired by the push-pull inhibition phenomenon,
a phenomenon that is observed in certain neurons in the visual cortex. Replacing the first layer of existing
CNNs with this push-pull layer, significantly enhanced the robustness against noise that was unseen during
training [30].

Not all biologically inspired computer vision work is about replicating phenomena observed in neurons in
the visual cortex, Chen et al. discussed the use of an event-based neuromorphic vision sensor for autonomous
driving. In contrast to regular cameras, this sensor does not record and process the brightness for every pixel
for every frame, but observes brightness changes and triggers asynchronous events based on that, which is
more similar to how human eyesight works. The advantages of this over regular cameras include low energy
consumption, high dynamic range and no motion blur problems [6].

In regards to MDE, Auty and Mikolajczyk provided an adaptation to a scaled-down version of the
method from Bhat et al. [3]. Instead of using just a three-channel (red, green and blue) image, their work
explicitly extracts information about both the known size and relative size of objects and encodes this into
extra channels for the input image. This method has not been able to achieve better performance than the
original method from Bhat et al., but the latter has a significantly greater capacity. In fact, this method
does achieve significantly better performance than the scaled-down version it is directly based on, for every
metric. Therefore, this work has shown that the addition of explicit biological cues to the input space can
improve the performance of a monocular depth estimation system.

Conclusion This literature review describes and compares different methods for MDE, each having dif-
ferent advantages and disadvantages. Therefore, the described studies provide useful insights for this work.
Additionally, the biologically inspired work shows how taking inspiration from biological vision systems can
have a positive impact on the development of computer vision methods. Most relevant to this work is the
work of Auty and Mikolajczyk, which shows that the explicit addition of a biological cue, namely information
about the size of objects, can improve the performance of an MDE system [2]. What has not been addressed
in the literature above, nor has it been found in any of the other relevant literature, is a study on whether
the addition of other known biological cues can also improve the performance of an MDE system. Therefore,
what will be addressed in this work (as mentioned in the motivation, Section 1.1) will bring novelty.



Chapter 3

Preliminary Experiments

This chapter describes the initial experimentation for the extraction of two biological cues, namely linear
perspective and blur.

3.1 Linear Perspective

Method To extract cues from an input image and encode them as another image of the same resolution
the following methods are used. The Canny edge detection algorithm [5] is used to find significant brightness
steps in the blurred, grey-scale input image in any direction, which are the desired edges. Afterwards, a
Hough transform [18] is used on this edge map to find line pieces that are of a minimum desired length
and have a maximum gap size. For every pair of line pieces, the intersection point of their corresponding
mathematical lines is determined. To estimate the vanishing point, the average of most of these points is
calculated: for both x and y, the values are ranked, and the weighted average is calculated from the centre
70% (since two lines that are nearly parallel and are spaced far apart can have an intersection point that
has such high values that it has a significant influence on the result), with the weight being the product
of the lengths of the two line piece each point is the intersection of. The line pieces that do not intersect
this vanishing point within a certain margin are filtered out. Finally, new line pieces are created from the
remaining ones, that start from the vanishing point and intersect with the furthest point end of each line
piece, until the border of the image. This generates the result that can be found in Figure 3.1

Discussion The resulting image in Figure 3.1 looks like a useful cue for estimating depth. A human can
use it to get an idea of where the vanishing point is, as well as significant edges, and have an idea about
the depth of different parts of the image. However, this method depends on a lot of input constants, like
minimum line length, amount of blur and the intersection margin for filtering out line pieces. If the incorrect
values for an image are used, no lines or too many that are not related to the linear perspective might be
detected. Solely basing these values on the size of an input image has not been successful yet, and to generate
desirable results, setting them manually is still required for most images.

An optimiser might have to be used that checks for several input values and finds the best ones for
each image, however, this can have quite a negative effect on the time performance. Additionally, the
determination of all intersection points has a time complexity of O(n2) for n line pieces, which does not scale
well at all. Luckily, when an optimiser is used, the number of line pieces should remain relatively low.

Furthermore, while setting the values manually for images that show a lot of linear perspective creates
desirable results, for other images it is more difficult since there can be either too many lines that are detected
that are not related to the linear perspective and/or too many of the lines that are related that are filtered
out. If the method can be improved so that it works for most images that show some linear perspective
and does not generate any lines for images that do not, the extracted cue can be useful. This is because
there are existing depth data sets containing road data [14], where the lines of the road as well as its edges
can show linear perspective. Experiment 0 (Section 4.3) can be used to find out whether the extracted cues
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(a) Input image that contains a great
amount of linear perspective.

(b) The lines extracted using the de-
scribed linear perspective method.

(c) The same lines added on top of
the input image

Figure 3.1: Qualitative result of the linear perspective experiment.

(a) Input image of a horse with a
blurry background.

(b) The extracted sharpness map, the
intensity corresponds to sharpness.

(c) The previous two images blended
together.

Figure 3.2: Qualitative result of the blur experiment.

are actually useful for MDE and/or whether using a circular gradient with the vanishing point in the center
might be better.

3.2 Blur

Method As described in Section 1.3 it would be desirable to obtain a blur map for every input image,
which can be used as extra input for an MDE system. The method from Golestaneh and Karam achieves
exactly that. It is based on the fact that a grey-scale image can be transformed into a sum of waves for both
the vertical and horizontal direction (in this case, using a discrete cosine transform). For a blurry image,
the amplitudes of the resulting waves with high frequencies are on average lower than for a sharper image.
For every pixel, a patch of a certain size in which the pixel is in the centre is taken from the original image,
and the amount of blur is determined using the coefficients of the higher frequency waves obtained using
the discrete cosine transform. This is done for the original image, but also for the image blurred at different
scales, which together can be used to determine the final amount of blur for each pixel. Additionally, the
results are normalised so that the pixel with the highest sharpness value has value of 1 and the pixel with
the lowest 0. A complete description of the method can be found in the original paper [16].

Discussion Qualitative evaluation of the method resulted in satisfactory results. As can be seen in Figure
3.2, the horse and the grass close to the camera generally get high sharpness values, while the blurry
background gets much lower sharpness values. Furthermore, the grass can be seen as a texture gradient,
and the algorithm correctly detects that it is more coarse closer to the camera. It is true that some parts of
the resulting map do not seem realistic, like how the white part of the horse’s head gets a lower sharpness
estimation than the rest of the head. However, using just the blur map can already be used by a human
to have an idea about the depth in the image. Experiment 0 (Section 4.3) can confirm whether this cue is
also useful for machine MDE. Additionally, for texture gradient the higher coarseness is always closer to the
camera, but for blur it is possible that an object is closer to the camera than the focal point, so it can be



more blurry than an object that is further away. However, this is mostly present in professional photographs
and manual inspection of public depth data sets found no occurrence of such a phenomenon, so it can be
assumed that for most pictures, blur can be positively related to depth. The main downside of this method
is the time performance, it scales up quadratic on the image size. For relatively small images the time
performance is acceptable, but if a data set contained many larger images, it can be problematic. If this is
the case, there are two possibilities: scaling down an image that is too large and scaling back up the result,
or using a modified variant that has better time performance. The former will surely decrease the accuracy
and the latter likely results in decreased accuracy as well.



Chapter 4

Proposed Method

This chapter describes the proposed method for this study, as well as the experiments that should help in
answering the research questions.

4.1 Model

The proposed schematic can be found in Figure 4.1. This work directly follows from the thesis of Al-jibouri,
whose end-to-end MDE method used a cGAN [1]. The generator receives an RGB image as input and learns
to produce a depth map of the same dimensions. The input for the discriminator is an image paired with
either the generated depth map or the ground truth depth map and learns to decide which is which. The
generator and discriminator from this method can be found in Figure 4.2. The proposed model is based on
this, but with a modified generation part, so that it allows for the inclusion of explicit biological cues. The
main modifications to be applied to the generator and discriminator are the following:

• Larger image width and height (for example 480× 960) so that more image sizes are supported.

• Greater amount of image channels (from 3 to at least 8) to allow for the addition of (different combi-
nations of) cues to the input space.

• Further modifications that ensure that the generator actually uses the additional channels and not just
the color channels.

• Further modifications that ensure that the generator and the discriminator find an equilibrium.

The reasons for choosing a cGAN over a traditional CNN architecture are the following:

• Zhang et al. and Chen et al. have shown that a cGAN is able to outperform the depth estimation of
other methods (including ones that use a more conventional CNN) in every metric used.

• While Auty and Mikolajczyk have shown that the addition of explicit biological cues can improve
the performance of a more conventional CNN [2], a thorough search of the relevant literature has not
yielded any similar work for a cGAN. Therefore, there is novelty in using a cGAN.

The reasons for modifying the input space over another possibility like encoding cues in a hidden layer are
the following:

• While the chosen biological cues are known to be used by humans, most of them cannot be linked to a
specific phenomenon observed in a specific group of cells in the visual cortex, as far as is known. This
means that there is nothing a hidden layer can be modelled after.

• Existing methods that can be used to extract cues, like the method for extracting blur (Section 3.2),
already encode the extracted information as a map of the same resolution as the input image [16].
Additionally, Auty and Mikolajczyk have shown that object size cues can also be encoded into multiple
of these channels [2].
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Figure 4.1: Schematic of the proposed model, based on the schematic of Chen et al. [7], with extensions that
enable the use of biological cues. The RGB and depth images are from NYUDepth [29].

Figure 4.2: The generator and discriminator from Al-jibouri [1].



• There is a better comparison between the model that is trained on only input images (control model)
and when it is trained with additional depth information, since the architecture is the same.

• Combining multiple cues is trivial since all generated channels can be stacked upon the original image
channels.

4.2 Data sets

As described above the proposed model requires RGB-depth pairs for both training and evaluation. There
are several existing data sets that already contain this desired data format, or that can be used to generate
the desired data format, these are: Make3D [28], KITTI [14], NYUDepth [29], DispNet [23] and FlyingChairs
[8]. These are described in more detail in the literature review. Additionally, other data sets that contain
data that already are or can be transformed into RGB-depth pairs, could also be used.

Contribution To ensure the presence of enough training data, it might be necessary to create a new data
set, work on this will be done before the actual work on the thesis and the implementation of the model.
One possibility is to generate RGB-depth pairs using 3D data from hyper-realistic video games, like Grand
Theft Auto 5 or Red Dead Redemption 2. Additionally, this data can be recorded using a camera setup that
consists of both an RGB camera and a Lidar scanner, which are present in the recent, high-end iPhone and
iPad models. If one or both of these methods is deemed successful in creating usable data, a new data set
can be created, which can be considered an extra contribution of this work.

4.3 Experiments

To use the model previously described to answer all the research questions the following experiments are to
be performed, each of which uses a certain subset of the collection of data sets described above. All of these
should be performed in the given order, except for Experiment 3 and Experiment 4, which can be performed
in parallel.

For every experiment a model is trained that produces a depth map, for which a ground truth depth map
exists. Therefore, evaluating the performance of a model consists of measuring the difference between the
estimated depth for a pixel and its ground truth value. For a pixel collection P consisting of ground truth
depth values p paired with estimated values p̂, the following metrics can be used (which also have been used
in other work [11, 1]):
Thresholded difference: % of pixels for which δ = max(pp̂ ,

p̂
p ) < threshold

Absolute relative difference: 1
|P|

∑
p∈P

|p−p̂|
p

Squared relative difference: 1
|P|

∑
p∈P

(p−p̂)2

p

Linear RMS Error:
√

1
|P|

∑
p∈P (p− p̂)2

Log RMS Error:
√

1
|P|

∑
p∈P (log10 p− log10 p̂)

2

Scale-invariant log RMS Error:
√

1
|P|

∑
p∈P (log10 p̂− log10 p+ α(P))2

where α(P) = 1
|P|

∑
p∈P(log10 p− log10 p̂)

Experiment 0: Usefulness of each Cue

For this preliminary experiment, an extracted cue is used as the only input for an MDE system. It can likely
be performed using a relatively small subset of the available data. This would allow for the determination
of which of the cue extraction methods can be used by the MDE system to significantly outperform random
estimation. Besides that, this experiment can also be used to select the best out of a group of candidate
methods for one of the depth cues.



Experiment 1: Performance of each Cue

For each chosen cue, the extraction methods are applied to the same input images, and a model that utilises
the cue is trained on these images. Additionally, a model that does not utilise any cues (control) is trained on
the same images. After training, all models are evaluated on the same group of test images. This experiment
likely requires a larger subset of the available data to be performed. The results from this should help with
determining whether depth cues can increase the performance of an MDE method (RQ1), and how the
different depth cues compare against each other.

Experiment 2: Performance of Combined Cues

Given that they exist, the cues that significantly outperform the control model are all combined and used
to train a model on the same training set from Experiment 1. It is also evaluated on the same test set
so that it can be compared to the models from Experiment 1. This result should help in determining
whether combining multiple depth cues can further improve results (given that more than one depth cue can
individually improve depth estimation), which is again related to RQ1.

Experiment 3: Performance of Model with Cues compared to the
State-of-the-art

The model from Experiment 1 and Experiment 2 with the lowest error, is compared trained and evaluated
using a specific subset of the available data, namely, the Eigen split [11]. Since the training and test sets are
used in other work this allows for a comparison of the best model from this work against the state-of-the-art,
which should help in answering RQ2.

Experiment 4: Investigation into the Effect of Cues on the Efficiency and
Performance of a Model in terms of Training Data

Two models are used from Experiment 1 and/or 2: the one with the best performance and the control model.
Given that the former significantly outperforms the latter on relatively small amounts of data, both models
are trained on an increasing amount of data. First, these results should allow for the comparison between a
model with cues trained on a lower amount of data and a model without cues trained on a higher amount
of data, which helps in answering RQ3. Furthermore, they should indicate whether the performance of
the control model gets closer to that of the other model for an increasing amount of training data and if it
eventually matches that model, or even outperforms it (RQ4). This could indicate that a model without
explicit cues eventually learns to use similar steps.



Chapter 5

Planning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Preparatory work

Research topics

Data collection

Preparation

Implement cue extraction

Linear perspective

Object size

Overlapping

Implement ML models

Model for experiment 0

Generator from 4.1

Discriminator from 4.1

Test and improve generator

Perform experiments

Experiment 0

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Report

Cue extraction

Model and modifications

Results and conclusion

Finalise report

Figure 5.1: Weekly planning. Week 1 is the week of Monday 6 February 2023 and week 21 of Monday 26
June 2023. The index 0 refers to the period from September 2022 until week 1.

An overview of the planning can be found in Figure 5.1. This is further elaborated below.

18



Data Collection This task is performed during the period between the research topics and work on the
actual thesis, the goal is to gather enough data for Experiment 4. This period lasts about three months,
which might be considered to be a lot for just data collection, but since this is before the actual thesis, work
this work will be part-time, so three months seems realistic.

Cue Extraction During the actual work on the thesis, the first step is to will extract each selected
biological cue (Section 1.3). For the blur cue, there already is a method for extracting it in the desired form,
some work might have to be done in creating a similar method with better time performance, but since the
images from most public data sets have acceptable sizes, this is not expected. For the linear perspective cue,
some work has already been done as well, however, improvement is still needed to make it work for most
images that show linear perspective. Extracting the object size cue is expected to take the most time, since
an object recognition algorithm has to be selected, which classes are used have to be determined, average
object sizes have to be determined for each class and all of this information has to be encoded into the desired
format. Luckily, Auty and Mikolajczyk already worked on this, which provides some insight. Extracting the
last cue, overlapping, it is not expected to take much time, since the same object recognition algorithm can
be used.

Model The following step is the implementation of the model from Section 4.1. After it is determined
which cues can be used and how many channels each cue requires, the generator from Figure 4.2 can be
modified to allow for the amount of image channels needed. Additionally, the other modifications mentioned
in Section 4.1 are applied to the model. Implementing this model and testing that the model actually uses
the additional image channels and the generator and discriminator train to find an equilibrium is expected
to take around five weeks.

Experiments The first experiment that is performed is Experiment 0, to determine which of the extracted
cues can be used, this experiment can be performed before the final model is implemented. After the model
is implemented, the other experiments are used to evaluate it. Doing this and discussing the results is
expected to take around five weeks. This is mainly because every experiment is dependent on the results
of prior experiments, except for the last two experiments, which can be performed in parallel. Besides, an
available environment has to be found, and training the model for each experiment is expected to take quite
some time, especially for Experiment 4.

Report During the implementation, what will be worked on, will be described in the report. During
the experimentation the results and the conclusion will be written. Finally, the last four weeks consist of
cleaning up and finalising the report. Additionally, this last period also functions as a buffer for work that
takes longer than originally planned.
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