
Building a Data-Driven Search Engine Spelling Corrector

Bas Niesink
University of Twente

P.O. Box 217, 7500 AE
Enschede, The Netherlands

s.w.r.niesink-1@student.utwente.nl

Stefanie Stevens
University of Twente

P.O. Box 217, 7500 AE
Enschede, The Netherlands

s.a.stevens@student.utwente.nl

ABSTRACT
Search engines perform better with faultless search queries.
In this paper, data-driven domain-specific spelling correctors
are designed and evaluated. The attained accuracy of the
best model is 0.675.

Keywords
spelling correction; FAROO; Norvig; bigrams; language model

1. INTRODUCTION
People frequently make spelling errors and typing mis-

takes. For persons, these errors have little effect on reading
comprehension. For computers, however, these errors are
problematic, especially for search engines. Erroneous search
queries result in bad results, since the misspelled words dif-
fer from the correct ones on websites. In addition, users do
not always know how to spell names, for example. To still
provide the results a user expects, the search engine must
correct errors made by the user.

1.1 Problem statement
The University of Twente (UT) has its own search engine1

to help find information on the UT network, among other
sources. The search engine can be used, for example, to find
information about courses, buildings, and student associa-
tions. Currently, the UT search engine does not contain a
spelling corrector, while it could substantially improve the
results’ quality. Since most searches are specific to the UT,
a spelling corrector could be devised which is trained to op-
erate within this domain. Instead of dictionaries it could
utilize websites related to the UT, or search queries entered
in the system, to learn the terms that users of the engine
may wish to find. This approach is called data-driven.

This research attempts to design and evaluate a data-
driven spelling corrector for UT Search. New methods and
existing ones will be combined to create this system. An
overview of these methods is given in sections 2, 3, and 5.

Most techniques use bigrams to construct fast language
models and to preserve the relation between adjacent words[4][16].
However, inverted bigrams may solve different errors than
regular bigrams (section 2.2). Therefore, the performance
of both bigram types will be measured in this research.

According to BRON, people do not notice it when search
engines correct errors within 200 milliseconds. Thus, the
correction speed of the devised systems will be compared to
that.

1http://search.utwente.nl/

1.2 Research questions
The aim of this investigation can be summarized with the

following research questions:

RQ1 What method yields the highest spelling correction
accuracy?

RQ2 Does this method handle corrections within 200 mil-
liseconds?

RQ3 Does the addition of inverted bigrams lead to a
higher accuracy?

2. BACKGROUND

2.1 Tokenization
Tokenization is the conversion of sentences into separate

words or tokens, often by using whitespace or special charac-
ters as delimiters. Tokenization does have downsides, for in-
stance, when American-football players is split into Amer-

ican, football, and players, the relation to the sport American-
football is lost.

2.2 N-grams and bigrams
To preserve the relation between adjacent words n-grams

can be used. These consist of tuples of n adjacent tokens.
The string American-football players is split into (Amer-

ican, football), (football, players) when creating 2-
grams after tokenization. Thus, holding information about
the sport American football and the fact that the players are
football players. N-grams of length 2 are called bigrams.

A variation of the bigram is the inverted bigram, which
is a bigram with swapped tokens. Inverted bigrams may be
useful to, for instance, allow searches on Twente University
when only University Twente was present in the training
set.

2.3 Language model
Language models are utilized to calculate the probability

of a token, or sequence of tokens occurring in a language.
This can be a real language, such as English, or a domain-
specific one such as the terms related to the UT.

A simple language model is described by Chen and Good-
man and uses the frequency of tokens and bigrams to esti-
mate the likelihood of a sentence [5]. Additive smoothing is
applied for unknown terms.

If bigrams were not used in the model, instead of the most
probable sentence, the sequence of most likely tokens would
be selected. This could mean, for instance, that instead of

Twente University the system could suggest Twenty Univer-
sity as the correction, since Twenty occurs more frequently
than Twente in most texts.

2.4 Levenshtein distance
The Levenshtein distance[14] measures the minimum num-

ber of single character edits needed to transform a string
into another one. Edits include the insertion, deletion, and
replacement of characters. The distance can be used to
find correction candidates and help in determining the most
likely one.

3. RELATED WORK

3.1 Norvig
Peter Norvig proposed a method that corrects up to two

errors in a token [18]. If the entered token is known it is
returned. Otherwise, it returns the candidate with one or
two mistakes and the highest likelihood. If non exists, the
original query is returned.

3.2 FAROO
The approach by FAROO works by storing tokens with

all possible character deletions up to distance 2, for each
token in a training set [9]. The same deletions are generated
when a token needs to be corrected. The lists of tokens
with deleted characters are then compared to find possible
corrections.

4. RESEARCH APPROACH

4.1 Supplied data
UT Search is currently operational and logs all entered

search queries. A log containing 14,810 queries was pro-
vided by the University. In addition, a web crawl of approx-
imately 40 GB was provided, containing websites related to
the university. A subset of the crawl will be used to train
the spelling correction algorithms, since the entire crawl is
too large for the system to handle.

4.2 Correction methods
With help of the query log and literature knowledge, tech-

niques will be selected, created, and combined to form dif-
ferent versions of spelling correctors. These variants need
to be trained and tested to determine the best variant and
answer the research questions.

The base of the correction algorithms will be a language
model (section 2.3) which uses bigrams and applies additive
smoothing. The model gives the likelihood of a sentence to
occur in a language. This likelihood can be combined with
other features to yield a score used for candidate selection.

4.3 Testing performance
There are three options to test the performance of the

correction algorithms. Firstly, an annotated list of queries,
such as the query log, could be used for automated testing.
Here an expert defines the correctly spelled queries.

Secondly, the quality of the search results attained by the
corrected queries could be used as a metric[7][12]. In this
case, test users could be asked to rank the results of the
original and corrected queries to see which one performs
best.

Finally, test users could enter both erroneous and errorless
queries and judge the corrections. By indicating whether
the entered query contained errors, several metrics can be
derived, such as the F1 score and the accuracy. This method
requires test users who posses knowledge of the University
of Twente.

The third option will be used in this research with accu-
racy as the performance metric. The latter was chosen since
it is equally important not to add errors to errorless queries
as it is to correct bad queries and the accuracy does not
discriminate on the type of mistakes made by the spelling
corrector.

Aside from feedback on the corrections, the time needed
to calculate the corrections will be stored, since this infor-
mation is required to answer the second research question.

5. TECHNIQUES

5.1 Token candidate generation
There are two ways in which candidates for single tokens

will be generated in this research. The first is the approach
of Peter Norvig (section 3.1). Contrary to the original im-
plementation, our implementation also takes words into ac-
count which did not occur in the training set, and returns
the union of all candidates instead of the most probable cor-
rection. The main reason for this is that most queries consist
of multiple tokens and the goal is to find the most probable
query, instead of the sequence of the most probable single
tokens. Therefore, all token candidates need to be supplied
by the algorithm instead of the most likely candidate.

The second approach uses FAROO’s method (section 3.2).
Again, the implementation was modified to yield all possible
candidates instead of the top candidate. Furthermore, since
the web sites in the data crawl are very large, the set of
precalculated data will become extremely large. As a result,
the correction times needed may grow exponentially and the
systems may not be able to store all data in the main mem-
ory. To mitigate this problem, a feature was added to the
systems using FAROO to only store the top n most fre-
quent tokens and remove the rest, to save space and reduce
the correction effort.

To limit the time complexity of the algorithms and to
remove unlikely correction candidates, the maximum edit
distance of the tokens was limited. A maximum edit distance
of 2 was chosen for each token in a query, for both candidate
generation methods. This means that the query itself may
contain more than two errors, namely two per token at most.

To determine the best correction candidate of a query, the
Cartesian product of the token candidates is calculated. For
each query candidate in this set, the likelihood is calculated.
This likelihood is then used by the different spelling correc-
tion algorithms to determine the final score of the query
candidate. The corrected query with the highest score is
returned to the user.

5.2 Sliding
The disadvantage of calculating the Cartesian product of

all token candidates is the exponential growth of the search
space. To solve this, two greedy approaches are implemented
in the correction algorithms which slide over pairs of tokens,
from left to right, to reduce the search space while processing
the query.

The first approach is the soft slide. At each step in the

sliding process, the top halve most likely query candidates
thus far is kept. The hard slide, however, only stores the
single best candidate at each step.

Both approaches reduce the memory footprint of the ap-
plication and lower the calculation times. However, this may
result in a lower quality of the correction results.

5.3 Maximum query edit distance
The techniques described earlier all allow two errors to be

made in each token of the query. Consequently, corrections
may be proposed for an unrealistic number of errors. Fur-
thermore, these techniques do not solve errors caused by (the
lack of) spaces. To solve this problem, an additional method
is added which looks at the number of mistakes made in the
entire query, instead of single tokens, and also adds and re-
moves spaces.

5.4 Bigram inverses
Bigram inverses (section 5.4) may be used to solve prob-

lems in which two words where entered in reverse order. The
inverses are optionally taken into account by the algorithms
when counting bigrams in the lanuage model, by adding the
counts of the inverses to the regular counts.

5.5 First letter bonus
It is expected that the first letter of search tokens is less

frequently misspelled than the other characters. To test this
hypothesis, and possibly improve performance, an optional
bonus score is added to token correction candidates which
have a matching first letter.

5.6 Edit distance bonus
Intuitively, a correction candidate which is more similar

to the misspelled tokens is more likely to be the right one
than a candidate that contains more differences. Therefore,
bonus scores are added for this feature as well.

5.7 Threshold
To prevent unlikely candidates from being returned as

the correction, an optional likelihood threshold was imple-
mented[21][13]. When the threshold is not reached the orig-
inal query is returned.

5.8 Cleaning
To prevent the model from becoming too large when train-

ing on large data sets, the data set is cleaned periodically.
During the cleaning process only the tokens and n-grams
which occur more than a certain number of times are kept[19].
This may affect the correction quality[13].

6. IMPLEMENTATION
The models and variations were implemented using Python.

In addition to stand-alone training and testing, the applica-
tion is able to run as a REST server. When deployed as a
server, the application logs all queries ran, including their
execution times, and the feedback received from test users.
The implemented models are listed in table 2 of the ap-
pendix.

In addition, a web application was developed using HTML
and JavaScript. This application is utilized by the test users
to correct queries and provide feedback to the corrections.
The web application sends the queries and feedback to the
Python server for processing.

A selection of the websites from the web crawl had to
be made, since the provided crawl was too large for the
system to handle, even with a cleaning process implemented.
The university website itself and websites which are likely to
contain common terms of the university were selected. The
list of selected websites and their corresponding sizes can be
found in table 1 of the appendix.

7. RESULTS AND DISCUSSION

7.1 Problems
Several problems occurred during preliminary testing and

the final tests. Firstly, although only 3.8 GB of websites
were selected for training, the training process took too long.
Therefore, only 10 percent of the data, chosen randomly at
run-time, was used.

Secondly, although cleaning lowered the memory footprint
of the server substantially, it still consumed a lot of memory.
Since the application ran on a shared server, after a period
of inactivity the application’s data in the main memory was
moved to the swap. Consequently, the first query corrections
made after an inactive period were slow, since the data had
to be moved to the main memory again.

Thirdly, queries with three or more words took so much
time to process that the testing system became unusable.
Therefore, during the testing process, the query length was
limited to two words. As a result, the sliding algorithms and
correction of long queries could not be tested, even though
long queries occur frequently in the UT Search query log.

Finally, the technique that limits the number of edits in
the entire query (section 5.3) did not work well in practice.
While the implementation was functional and able to cor-
rect more complex mistakes, it took as long as 5 minutes
to correct queries of low complexity. Therefore, it was not
included in the final tests.

7.2 Testing
The test users - UT students - submitted 239 queries in the

final test, all of which were used to measure the correction
times. For 200 of these queries valid feedback was received.
For one query invalid feedback was received and for 38 others
no feedback at all.

The users were allowed to submit errorless queries to the
system and could, for each query, indicate if they had. Only
13% of the queries entered did not contain errors.

7.3 Accuracy
The highest accuracy attained by a model was 0.675. This

model corrected 68% of the erroneous queries but introduced
errors to 33% of the errorless ones. This last problem may
be solved by not correcting queries that already pass a likeli-
hood threshold in the language model, although such queries
may still be erroneous. Another option is to propose correc-
tions similar to Google’s did you mean functionality, instead
of applying them anyway.

The model used FAROO for candidates generation and
did not take inverted bigrams into account. It did not use
sliding but this may be due to the imposed limitation of
two words per query. Furthermore, it did not use likelihood
thresholds, but it did give bonuses for equal first letters and
a low edit distance. This answers the first and third research
questions.

The exact results can be found in table 3 of the appendix.

7.4 Speed
On average, the algorithms required 347 milliseconds to

correct a query. However, preliminary testing revealed that
the time needed strongly depends on the training set’s size.
By decreasing this size, reducing the time below 200 millisec-
onds should be no problem, given a maximum query length
of two words.

The best model required 1288 milliseconds on average but
this is likely caused by the high start-up time required after a
period of inactivity, since the best model was the first in line
to be tested for each query. Since the model is very similar to
other models, including ones using more complex techniques,
the system is probably much faster than the measurements
indicate.

To answer the second research question, the current imple-
mentations did not operate within 200 milliseconds. How-
ever, with a reduction of the model size, a limited query
length, and more main memory the time constraint can be
reached.

8. CONCLUSIONS AND FURTHER WORK
In this research eighteen data-driven spelling correctors

were developed, trained and tested. The best performing
one attained an accuracy of 67.5 percent. This model did not
include inverted bigrams in its model, which may indicate
that these do not lead to a higher accuracy.

The systems were not able to handle large amounts of
data. In the end around 380 MB of websites was used for
training. This was still too much data to attain correction
times below 200 milliseconds.

Further research should focus on handling large amounts
of data, for instance, by using MapReduce to create a lan-
guage model. In addition, other ways need to be found to in-
crease the accuracy of the models and increase their speeds.

9. REFERENCES
[1] D. Boswell. CSE 256 (Spring 2004)“Language Models

for Spelling Correction”. B Siklósi et al/Computer
Speech and Language xxx (. . . , 2004.

[2] A. Boyd and D. Meurers. Data-Driven Correction of
Function Words in Non-Native English. pages 1–3,
Oct. 2011.

[3] W. A. Burkhard and R. M. Keller. Some approaches
to best-match file searching. Communications of the
ACM, 16(4):230–236, Apr. 1973.

[4] A. Carlson and I. Fette. Memory-based
context-sensitive spelling correction at web scale. In
Sixth International Conference on Machine Learning
and Applications (ICMLA 2007), pages 166–171.
IEEE, Sept. 2007.

[5] S. F. Chen and J. Goodman. An Empirical Study of
Smoothing Techniques for Language Modeling. 1998.

[6] M. Choudhury, M. Thomas, A. Mukherjee, A. Basu,
and N. Ganguly. How Difficult is it to Develop a
Perfect Spell-checker? A Cross-linguistic Analysis
through Complex Network Approach. Mar. 2007.

[7] V. Dang and B. W. Croft. Query reformulation using
anchor text. In WSDM ’10: Proceedings of the third
ACM international conference on Web search and data
mining, pages 41–50, New York, New York, USA, Feb.
2010. University of Massachusetts Amherst, ACM.

[8] A. Elghafari, D. Meurers, and H. Wunsch. Exploring
the data-driven prediction of prepositions in English.
In COLING ’10: Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 1122–1130. University of Tubingen, Association
for Computational Linguistics, Aug. 2010.

[9] FAROO. 1000x faster spelling correction algorithm,
2012.

[10] J. Gao, X. Li, D. Micol, C. Quirk, and X. Sun. A
Large Scale Ranker-Based System for Search Query
Spelling Correction. pages 1–9, Aug. 2010.

[11] P. Hsu. Online Spelling Correction for Query
Completion. pages 1–10, Feb. 2011.

[12] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. WWW, pages
387–396, 2006.

[13] A. Koul. Spelling Alteration for Web Search
Workshop. pages 1–32, July 2011.

[14] V. I. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707–, Feb. 1966.

[15] Y. Li, H. Duan, and C. X. Zhai. Cloudspeller: Spelling
correction for search queries by using a unified hidden
markov model with web-scale resources. Spelling
Alteration for Web Search Workshop, 2011.

[16] A. f. C. Linguistics. Learning a Spelling Error Model
from Search Query Logs. pages 1–8, Nov. 2005.

[17] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, Cambridge, July 2008.

[18] P. Norvig. How to write a spelling corrector, 2007.

[19] R. Rosenfeld. Two decades of statistical language
modeling: Where do we go from here? 2000.

[20] T. Sullivan and A. Kulkarni. CS 276 Programming
Assignment 1: K-Gram Spelling Correction and
Lucene. pages 1–10, Dec. 2008.

[21] C. Whitelaw, B. Hutchinson, G. Y. Chung, and
G. Ellis. Using the web for language independent
spellchecking and autocorrection. In EMNLP ’09:
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2 -
Volume 2, pages 890–899. Google Inc., Association for

Computational Linguistics, Aug. 2009.

APPENDIX

Table 1: Website selection

Website Size (in MB)

blackboard.utwente.nl 4.4
my.utwente.nl 1.3
utwente.nl 2.5
www.ewi.utwente.nl 2.1
wwwhome.cs.utwente.nl 0.1
wwwhome.ewi.utwente.nl 8.6
www.union.utwente.nl 9.0
www.utwente.nl 3805.0

3833.0

Table 2: Model variants

Slide

Variant Candidate Soft Hard Inverse bigrams Threshold Edit bonus First letter bonus

0 FAROO 0 0 0 - 1.2 .95
1 FAROO 1 0 0 - 1.2 .95
2 FAROO 0 1 0 - 1.2 .95
3 FAROO 0 0 0 - - -
4 FAROO 0 0 1 - 1.2 .95
5 FAROO 1 0 1 - 1.2 .95
6 FAROO 0 1 1 - 1.2 .95
7 FAROO 0 0 1 - - -
8 Norvig 0 0 0 - 1.2 .95
9 Norvig 1 0 0 - 1.2 .95
10 Norvig 0 1 0 - 1.2 .95
11 Norvig 0 0 1 - 1.2 .95
12 Norvig 1 0 1 - 1.2 .95
13 Norvig 0 1 1 - 1.2 .95
14 Norvig 0 0 1 - - -
15 Norvig 0 0 1 -110 - -
16 Norvig 0 0 1 -90 - -
17 Norvig 1 0 1 - 1.5 .50

Table 3: Model performance

Accuracy Errorless query Erroneous query

Variant Errorless Erroneous Total Wrong Valid Wrong Valid Avg. time (in MS)

0 .667 .676 .675 9 18 56 117 1288
1 .259 .197 .205 20 7 139 34 417
2 .259 .179 .190 20 7 142 31 83
3 .630 .647 .645 10 17 61 112 325
4 .667 .665 .665 9 18 58 115 652
5 .259 .208 .215 20 7 137 36 356
6 .259 .202 .210 20 7 138 35 110
7 .667 .670 .670 9 18 57 116 441
8 .778 .624 .645 6 21 65 108 322
9 .630 .324 .365 10 17 117 56 265
10 .630 .295 .340 10 17 122 51 226
11 .778 .584 .610 6 21 72 101 261
12 .630 .312 .355 10 17 119 54 248
13 .630 .306 .350 10 17 120 53 235
14 .778 .601 .625 6 21 69 104 254
15 .926 .387 .460 2 25 106 67 252
16 .926 .335 .415 2 25 115 58 251
17 .667 .306 .355 9 18 120 53 262

