

Software Engineering

Estimate the post-release Defect
Density based on the Test Level

Quality

Author:
ing. L. Vinke

Supervisors:
prof. dr. P. Klint

drs. M. Pil

June 27, 2011

Table of Contents

1 Introduction and motivation 7
1.1 Context . 7
1.2 Problem definition . 9

1.2.1 Research questions . 10
1.2.2 Hypotheses . 11
1.2.3 Scope . 12

1.3 Outline . 12

2 Background and context 14
2.1 Quality . 14
2.2 Defects . 15
2.3 TMap . 16
2.4 Software Measurement . 17
2.5 Data Quality Optimizations . 18

2.5.1 Data Quality Dimensions 18
2.5.2 Data Quality Improvement 19

2.6 Related investigations . 19

3 Research Method and Approach 21
3.1 Empirical cycle . 21
3.2 Research method . 22

4 Formal model for research 24
4.1 Application of GQM approach 24
4.2 Test Level Quality . 24

4.2.1 Defects . 25
4.2.2 Test levels . 25
4.2.3 Relation between defects and test levels 25
4.2.4 Test Level Quality . 26

4.3 Post-release Defect Density . 28
4.4 Defect classification . 28
4.5 Concluding remarks . 30

1

5 Research 31
5.1 Projects analyzed . 31
5.2 Research considerations . 32

5.2.1 Determine test levels . 32
5.2.2 Classify defects . 32
5.2.3 Source lines of code . 32
5.2.4 Analysis of classified defects 33
5.2.5 Total number of post-release incidents 33
5.2.6 Post-release defects . 34

5.3 Research results of project A . 35
5.3.1 Test levels . 35
5.3.2 Analysis of defects . 35
5.3.3 Post-release defects . 37
5.3.4 TLQ versus post-release Defect Density 37

5.4 Comparison between projects . 37
5.5 Concluding remarks . 39

6 Threats to validity 43
6.1 Influence of other factors . 43
6.2 Data quality . 44
6.3 Research bias . 46
6.4 Concluding remarks . 47

7 Conclusions and further research 48
7.1 Conclusion . 48
7.2 Pointers for further research . 49

A Data collection and analysis 54
A.1 Data collection . 54

A.1.1 Main steps . 54
A.1.2 Defect classification . 54
A.1.3 Defect type classification 55
A.1.4 Classification of a defect is found too late 60

A.2 Data analysis . 60

B Influence of other factors 62
B.1 Specification and documenation 63
B.2 New functionality . 63
B.3 Design and development process 63
B.4 Testing and rework . 64
B.5 Project management . 64

C Research data 65
C.1 Project A . 65
C.2 Project B . 76
C.3 Project C . 88

2

C.4 Project D . 99

3

William A. Foster says ”Quality is never an accident; it is
always the result of high intention, sincere effort, intelligent

direction and skillful execution; it represents the wise choice of
many alternatives.”

4

Abstract

IT projects carry out all sorts of quality control activities to guarantee a certain
quality. Testing is one of them. One goal of testing is to find defects in the
developed product. Yet there are many examples of defects found during the
operational phase. For example the bug in the Ariane rocket that resulted in the
rockets self-destruction. How can the quality of a software product be predicted
before it is used? More precisely formulated: how can the post-release Defect
Density be estimated based on the Test Level Quality?

First a formal research model is needed that describes the relationships be-
tween the different research elements. The Test Level Quality TLQ is a software-
metric that indicates the overall quality of the test levels. Defects of a particular
defect type should be found in a specific test phase as defined in a test method-
ology. A test level is a simplified sort of test phase in TMap. When a defect is
not found at the test level on which it should be found, the defect is found either
too late or too early. This depends on the order of the test levels. The TLQ
indicates the extent to which the defects are found too late. The post-release
Defect Density is the number of identified defects found during the operational
phase per 1000 source lines of code.

We conducted an empirical study about the relationship between the TLQ
and the post-release Defect Density. The conclusion for the projects analyzed is
that the post-release Defect Density halves when the TLQ increases from Very
Low to Low. For all of the projects analyzed the TLQ is classified as either Low
or Very Low.

We have analyzed four projects that were executed in the same context.
Otherwise it is not possible to draw conclusions; because if they are executed in
separate contexts other factors can be the root cause of the changing post-release
Defect Density.

5

Preface

This Master thesis is the final result of the research I have done to conclude
my study in the Master in Software Engineering program. I followed this study
part-time from September 2008 until June 2011. The quality of software or
the quality of processes fascinated me enormously during this period. During
the graduation process, I worked within a project team that delivered several
releases for a software product. While working on these projects, I noticed that
it was a complex process to predict the product quality based on several factors.
Due to my interest in software quality, it was an obvious choice to select the
research question ”how can the post-release Defect Density be estimated based
on the Test Level Quality.”

Many people have helped me during the graduation process. I received ex-
cellent guidance from the University of Amsterdam, and I would especially like
to thank Paul Klint, who supported me enthusiastically during the research
and gave me good advice. Info Support also give me guidance. I’d like to thank
Marco Pil who helped me during the research and gave me positive critical
reviews of the delivered artifacts. During the empirical research the following
colleagues also helped me either with collecting data or in another way: Wouter
Roelofs, Tom Zeinstra, Erik Sackman, Martin Adolfsen, Martin Oldejans, Johan
Vink and Xander Buffart. Finally I must mention the support of family. My
parents have supported me throughout my entire life and in the education that
I have followed. Without them this would not have succeeded. Thanks also to
my brothers, sister and sister in law. Last but not least I’d like to thank my
grandparents (and grandfather who died last year) who have been following my
graduation research and my entire study with great interest. And finally let me
thank everyone else who in any way contributed.

Lammert Vinke
Doornspijk
May 2011

6

Chapter 1

Introduction and
motivation

IT specialists and scientists have been trying for years to understand several
issues concerning the quality of developed software products. The quality of
software products can be expressed with different quality indicators. Quality
can be influenced by many different factors during the development and test
phase, for example the quality of the code and the quality of the specifications
[13]. This research investigates the influence of the quality of the different test
phases on the product quality that is expressed as the number of detected defects
per 1000 lines of source code.

1.1 Context

This research has been conducted at Info Support. Since its founding in 1986,
Info Support has grown from a sole proprietorship to a full-fledged IT services
company with over 300 employees.

Info Support carries out the work from offices in Netherlands and Belgium.
The core service of Info Support is to develop and manage innovative and ro-
bust software solutions. The experience of the employees of Info Support are
incorporated into the trainings. But this experience is also incorporated into its
software factory Endeavour.

Info Support has made the strategic choice of supporting the following tech-
nologies for all the services they offer: Microsoft (.NET, C#, SQL Server) and
Oracle (Fusion middleware, Weblogic, Suite, Java).

Endeavour

The research project analyzes a number of IT projects; all of these IT projects
work with Info Supports’ software factory Endeavour. Endeavour offers many

7

different elements that enhance the software development process. The purpose
of the software development line at Endeavour is threefold, namely:

• Increase in productivity;

• Delivery of adequate quality;

• Increasing transparency of the course of development and testing .

Endeavour focuses on three aspects the People, the Process and the Tools (see
figure 1.1). These include for example, process standards, training for users,
and tools to support the development process (e.g. defect registration systems)
etc.

Figure 1.1: People, processes and tools

Endeavour Test

A part of Endeavour that contributes to the achievement of adequate quality is
Endeavour Test. Endeavour doesn’t aim to achieve the highest product quality
possible, but its target is to achieve adequate quality. This is because not every
product or module needs the same level of quality. For example a premium
calculation module needs a higher quality than a marketing site.

Endeavour uses the methodology TMap for testing the developed software.
TMap is based on the so called V-Model (See figure 1.2). The V-Model con-
tains the specification, development and testing stages of a software development
project. The V-Model ensures that each step taken during a product’s specifi-
cation and development is tested. This is because in every step a mistake can be
made. An example: the product is tested based on the functional design in the
System Test and System Integration Test. Every test depicted in the picture is
called a test level in TMap.

8

Figure 1.2: V-model

Contribution of research to Endeavour

This research project contributes to the optimization of Endeavour by conduct-
ing research into possible relationships between Product Quality and the Test
Level Quality. The Product Quality will be indicated with the number of iden-
tified defects per 1000 lines of code. When it is possible to estimate the Product
Quality before the operational phase; more information is known about the risks
on facing defects in the production environment and the quality of the delivered
product.

1.2 Problem definition

How many defects will be found in the product after a product is delivered to
the production environment? And can the number of the yet unfound defects
be determined based on the quality of the various test phases?

Software projects are characterized generally by specification, build and test-
ing processes. At the end of a project, a product will be delivered to the pro-
duction environment. In the production environment the user can work with
the product. During this operational phase the end users will also find previ-
ously undetected defects. Is it possible to estimate the number of defects that
will be detected during the operational phase based on information from the
specification, build and testing processes?

The test discipline makes use of different phases. (See section 1.1 and section
2.3) The quality of a test phase can vary from phase to phase. But what is a
good metric to express the quality of a test phase? And can the number of post-
release defects be estimated based on the Test Level Quality? So the question

9

from the previous paragraph can be strengthened: how can the number of post-
release defects be estimated based on the Test Level Quality?

During the operational phase defects can also be found in the product. These
defects can have negative consequences. Two well-known examples: (a) The
defect in the Ariane rocket. The result of that defect was that the rocket
destroyed itself and the estimated costs were 370 million U.S. dollars. (b) The
year 2000 bug. How many lines of code have been rewritten to correct that
problem? Another problem is that sometimes too much is tested. This must be
avoided, because it can lead to high costs during the test phase [21].

In addition, the number of post-release defects also depends on several other
factors. A good example is the influence of the process quality on the number
of post-release defects found. Or what the influence is of the complexity of the
product? These elements are also taken into account during this research. This
is necessary to properly draw conclusions.

The core of the problem is that it is difficult to estimate how many defects
there are to be expected in the operational phase. However, this information is
critical to estimate how much risk a company is facing when a product is used
in the production environment. Within this research a contribution is made by
exploring how the post-release defects can be predicted based on the Test Level
Quality.

1.2.1 Research questions

Based on the problem description that is presented in the previous section the
following main research question is derived:

How can the post-release Defect Density be estimated based on
the Test Level Quality?

To answer this main question several sub-questions are formulated. Each sub-
question gives a part of the answer to the main research question. The answers
and a more detailed description of these questions can be found in the next
chapters.

1. How are the Test Level Quality and the post-release Defect Density
defined?

2. What is the relation between the Test Level Quality and the
post-release Defect Density?

3. Which other factors have an influence on the results of the research
project?

10

1.2.2 Hypotheses

The hypothesis is that post-release Defect Density is decreasing when the Test
Level Quality increases in the manner shown in the figure below (See figure 1.3).

Figure 1.3: Possible relation between post-release Defect Density and Test Level
Quality

This hypothesis is made based on literature. McConnel describes several
studies concerning the number of found defects per SLOC.

• Software contains an average of 1 to 25 defects per 1000 lines of code.
This is based on studies done by Boehm, Geremillion, Yourdon, Jones
and Weber;

• Microsoft experiences approximately 10 to 20 defects per 1000 SLOC dur-
ing the development/testing process and 0.5 post-release defects per 1000
SLOC;

• When using formal methods, the number of defects can be reduced to 3
pre-release defects per 1000 SLOC and 0.1 post-release defects per 1000
SLOC;

• Humphrey indicates that projects that are using TSP (Team Software
Process) experience an average of about 0.06 defects per 1000 SLOC.

Based on the studies above it is expected that the projects that will be analyzed
in this research contain approximately 15 pre-release defects per 1000 SLOC.
These projects strive for a Defect Removal Rate of 95% during the development
and testing process. Most projects realize only a Defect Removal Rate of 85%.
Based on the 15 defects per 1000 SLOC and the Defect Removal Rate of 85%,
the projects that will be analyzed contain 2.25 post-release defects per 1000
SLOC. Additionally it is assumed the Test Level Quality average is 50%. When
the Test Level Quality is 100% the project will still contain a few post-release
defects. And when the Test Level Quality is 0% the Product Quality decreases
enormously.

11

1.2.3 Scope

Due to time constraints, there was a need to limit the scope of the research.
The research was conducted for only one company and one product. The main
reason for this choice is that in this way all the other factors stay constant for
different projects. When the other factors are constant, it is easier to draw
conclusions (See chapter 5). This is because fewer factors play a role and can
influence the results. The consequence is that conclusions can only be drawn for
this company and product. These findings could be a strong indication however,
as to the existence of the same relationship for other products / companies. To
finally confirm this, more research is needed. This study provides the models
to further investigate those relationships.

1.3 Outline

Chapter 2 briefly describes the literature that was needed to carry out this
study. The third chapter describes the research method.

Figure 1.4: Chapter structure

Then in the subsequent chapters the various sub-questions are addressed.
In Chapter 4 the first sub-question is answered by a formal model that is used
during this research. In Chapter 5 the results from the conducted empirical
research are described. The results of this empirical research give the answers
to sub-question 2. Possible threats to validity and the influence of other factors
(Sub-question 3) are described in Chapter 6. The last chapter describes the
conclusions and gives advice for further research.

Thereafter, the appendices include additional information. Appendix A de-
scribes step by step how the research was conducted. Appendix B contains the
questionnaire that has been used to get more information about the other fac-

12

tors. Finally, Appendix C contains the data that has been collected during the
empirical investigation.

13

Chapter 2

Background and context

In recent years many scientific research projects have investigated how the qual-
ity of a software product can be determined by many factors. For example (a)
what is the influence of the code quality on the software product [22] or what is
the influence of the process quality on the software product [14]? The knowledge
gained during these investigations can be used in this study. The information
used is described in this chapter.

In Section 2.1 the definition of quality that is used in this thesis is explained.
The second section gives the definition of defects (see Section 2.2). There are
several ways to define the test phases. This research uses the definitions that
are given by TMap. See Section 2.3 for a more comprehensive description.
During the investigation the quality of the test level among other things will
be measured, therefore more background information on measurement is given
in Section 2.4. The quality of the data used in these measurements can be
classified as high or low. Thus, this data can be judged as more or less suited
to use. Therefore, Section 2.5 gives more information about data quality and
especially data quality optimizations.

2.1 Quality

There are different ideas about quality; therefore several models have emerged
that (a) indicate what quality is and (b) provide viewpoints from which quality
can be examined [19][26]. For this study we use the following definition of
quality [21].

Definition 2.1.1. Quality is the totality of features and characteristics of a
product or service that bear on its ability to satisfy stated or implied needs.

Garvin [19] distinguishes a number of different viewpoints of software quality.
Below are the different viewpoints described together with the reasoning why
this viewpoint was used for this study or not:

14

• According to the transcendent based viewpoint, quality cannot be de-
scribed precisely. Quality can only be recognized through experience and
with a comparative analysis. This viewpoint was not chosen for this re-
search; because it is not possible to measure the quality of an individual
product;

• According to the user based viewpoint, the quality is high when a
product meets the individual needs of users. This viewpoint was not
chosen for this research; because it was not possible to interview the users
of the product;

• According to the manufacturing based viewpoint, quality is expressed
as to what extent a product complies with predetermined specifications.
This viewpoint is not chosen for this research, because during this research
also the defects are addressed that will leads to rewriting the specifica-
tions. For example defects that are found by end users during the User
Acceptance Test;

• According to the value based viewpoint, the quality is not an absolute
fact, but the quality must be examined in relation to time, cost and effort.
This viewpoint is not chosen for this research, because these data are in
many cases not available;

• According to the product based viewpoint, the quality is determined by
a number of clearly defined characteristics of a product. These character-
istics can be determined in an objective way by measurement and audits.
This viewpoint is chosen for this research; the characteristic that will be
measured is the total number of identified defects (See definition 2.2.1).

This study uses the product-based viewpoint; the other viewpoints were more
or less unsuitable for this research.

2.2 Defects

Like quality there are also different definitions of a defect in the scientific world.
Therefore the literature is studied to answer this question: what is the definition
of a defect?

In the first place there is a distinction between a defect (also called an error)
and a failure. A defect is the cause of failure and a failure is the result of a
defect. Additionally a defect can lead to zero or more failures. Defects that
have not triggered a failure cannot be identified.

Scientifically it is still unknown what the relationship is between the num-
ber of identified defects (defects that have led to at least one failure and have
been registered) and the number of the residual defects (defects that have not
registered or have not triggered any failures) [13]. In other words it is unknown
what the total number of defects is. This research focuses only on the identified
defects.

15

There is also a distinction between the identified pre-release defects and
identified post-release defects (also called operational defects). Identified pre-
release defects are the defects that have been found during development and
test process. The operational defects are the defects found after delivery to the
production environment, these defects have triggered a failure in the production
environment.

Definition 2.2.1. A defect or a fault is a flaw in a component or system that
can cause the component or system to fail to perform its required function. A
defect, if encountered during execution, may cause a failure of the component
or system. Pre-release defects are identified during the development and test
process. Post-release defects are identified after the delivery to the production
environment.

Defect classification

For each identified defect it can be determined what type of defect it is. In the
literature several models describe how defects can be classified [7][8] [9][18][20].
A combination of these models is used during the defect classification process.
Defect Causal Analysis (DCA), Orthogonal Defect Classification (ODC) and
Personal Software Process (PSP) are three examples.

• With DCA [7] an expert team performs an analysis based on software
problem reports that help to identify the root causes of the defects. Based
on this information, an action team takes preventative actions to ensure
that these kind of problems cannot occur again. For example by carrying
out process optimizations.

• ODC [9] supports developers by extracting signatures on the development
process from defects. Together with the registration of a defect in the
defect registration system a team member determines the type of defect.
Based on the distribution of different identified defect types the project
team can estimate the maturity level of the developed product. ODC
recognizes eight different defect types.

• PSP [20] also has a defect classification schema. Developers use this
schema to classify all the identified defects. Based on this classification
the developers can improve their code quality. An example: the devel-
oper knows better what type of defects happen more often, when writing
the code he can avoid these kinds of defects by improved code checking
techniques.

2.3 TMap

TMap Next [21] is a structured test approach and is well suited for defining
several elements for this research. TMap is widely used by the testing discipline
in software developments projects. At the start of the software development

16

project, the Test Manager creates a Master Test Plan (MTP); this MTP includes
the different testing phases. An example of a test phase is the System Test
phase where a System Test tester checks if the product is built according to its
specifications. Another example is the User Acceptance Phase in which a user
checks if the application works according to his or her expectations. TMap calls
the testing phases test levels. An important aspect of a test level is that each
test level is defined to find a certain type of defects. For example: a System
Test focuses on testing if the product meets its specifications, a User Acceptance
Test focuses on testing if the product meets to the end-user expectations. The
test level definition [21] used by TMap is used intensively during this research

Definition 2.3.1. A Master Test Plan (MTP) is a test plan by which the
various test levels are geared to one another.

Definition 2.3.2. A test level is a group of test activities that are managed
and executed collectively.

2.4 Software Measurement

During the empirical study different elements will be measured; therefore this
section gives some background information about measurement. Nowadays
many quality models uses measurements extensively, for example ISO-9000 or
CMMI. Therefore much literature is available about this subject [2][1][22][12].
During this study the definition of measurement that is given by Fenton [12] is
used.

Definition 2.4.1. Measurement is the process by which numbers or symbols
are assigned to attributes of entities in the real world in such a way as to describe
them according to clearly defined rules.

For software metrics multiple definitions are found. Van Vliet [26] mentions
the following combination of properties of a metric:

• An attribute of an entity,

• the function which assigns a value to that attribute,

• the unit which this value is expressed, and

• its scale type.

Goal Question Metric

Basili [1] conceived and described the Goal Question Metric approach to deter-
mining valuable metrics. GQM starts with defining a purpose of why something
is measured, this purpose it the so named goal. This level is called the concep-
tual level. To achieve that goal a number of questions are formulated whose
answers together achieve the goal. This level is called the operational level.

17

The set of data which provides answers to the questions are expressed in soft-
ware metrics. These metrics exist to answer the question in a quantitative way.
Hence, this level is called the quantitative level.

Figure 2.1: Goal Question Metric

2.5 Data Quality Optimizations

One consequence of poor data quality is that no valid conclusions can be drawn.
Hence this is also an important aspect of the research. During this research it
is possible that the data quality of the registered defects is poor.

Various specialties have already examined several aspects of data quality, in-
cluding within the world of statistics, management and computer science. Batini
and Scannapiezo [4] describe in the book ”Data quality, concepts, methodologies
and techniques” a comprehensive and systematic introduction to data quality.
For this research it is important to get an answer to the following questions:
(a) What is data quality? (b) How can data quality be measured? (c) How can
Data Quality Improvement Methods improve the data quality?

2.5.1 Data Quality Dimensions

According to Batini the data quality can be expressed in six different dimensions,
namely accuracy, completeness, consistency, currency, timeliness and volatility.

• Accuracy indicates what the closeness is between a value v and the value
v1. There is a difference between syntactic and semantic accuracy. Syn-
tactic accuracy is the closeness of the value v to the elements of the cor-
responding definition domain D. An example: a definition domain can
be a set with all the defect types (Assignment, Checking, Environment
etc.). So, if v = ”Assignment”, but v1 = ”Checking”, then v is considered
syntactically correct. In contrast, semantic accuracy is the closeness of
the value v to true value of v1. In that case if v = ”Assignment”, but v1
= ”Checking”, then v is considered semantically incorrect.

• Completeness is the extent to which data are of sufficient breadth, depth
and scope for the task at hand. This data quality dimension also consists of

18

different sub-dimensions, namely schema completeness, column complete-
ness and population completeness. Schema completes indicates to which
extent the schema used is complete. Column completeness indicates to
which extent values are missing for specific properties or columns. Fi-
nally population completeness compares all the missing values in set s
with a reference set s1, the difference between the missing values in set s
compared to set s1 indicates the population completeness.

• Consistency is the extent to which different sets of data items are con-
sistent. Accuracy is about only two different values. Consistency is on the
other hand the comparison of whole sets with data items.

• Currency, timeliness and volatility are data quality dimensions that
are dependent on time. For example how available certain data is at any
given time. These dimensions are not important for this research because
research is carried out only after the projects are completed.

2.5.2 Data Quality Improvement

It is important that the data quality is good enough to draw accurate conclu-
sions. If the data is not of sufficient quality Data Quality Improvement methods
can be used. An example is Complete Data Quality Methodology, abbreviated
CDQM [4]. CDQM consists of three phases, namely (a) state reconstruction,
(b) assessment and (c) choice of optimal improvement process.

During the first step the researcher determines how the data was achieved.
Questions that can be asked: who enters the data, which quality steps are
performed and what processes are followed?

In the second step the existing data is analyzed. During this step the under-
lying problems of erroneous data are identified. In addition new data quality
standards are defined. These new data quality standards must be accomplished
after the optimization step.

Finally the data quality optimization is executed. By executing this step
different techniques and tools can be used. These steps are documented.

2.6 Related investigations

There have been many studies on the causal or statistical relationship be-
tween various factors and the Product Quality in general, see [3][10][11][13]
[14][15][16][17][18]. The research methods and information gathered by these
studies can be used to answer the sub-question concerning which other factors
have an influence on the results of the research project. The conclusions of all
previously executed studies are that many factors have an influence on the defect
insertion and defect discovery. Many studies categories categorize the factors
that have an influence in six areas (See Figure 2.2) So each area depicted in
that figure can have ans influence on the conclusions drawn.

19

Common influences

Specification and

documentation
Design and

development

Testing and rework

Scale of new functionality

implemented

Existing code base

Defect insertion and

discovery

Figure 2.2: Causal relationships to defect insertion and defect discovery

20

Chapter 3

Research Method and
Approach

To answer the main research question ”how the post-release Defect Density
can be estimated based on the Test Level Quality” an empirical investigation
has been executed. To execute the research in a structured scientific manner
two methods have been used, namely Goal Question Metric and the Empirical
Cycle. Section 3.1 describes the Empirical Cycle and Section 3.2 describes a
comprehensive description of the research approach.

3.1 Empirical cycle

De Groot [24] describes the empirical cycle for supporting empirical investiga-
tions. This model is not only used in the computer science related field, but
also in many other fields. The empirical cycle consists of five stages that follow
each other iteratively (see Figure 3.1).

Figure 3.1: The empirical cycle

During the observation phase information is collected and restructured. Based

21

on this information the hypothesis is formulated during the induction phase.
The next step involves the acquisition of empirical data. Based on this empiri-
cal data gathered different conclusions can be deduced. This stage is called the
deduction phase. After this phase the hypothesis is tested during the testing
stage. Finally the last phase evaluates the previous stages of the cycle. This
stage is called the evaluation stage. If desired, a new cycle can be started.

3.2 Research method

From a methodological viewpoint the research structure is based on a combina-
tion of Goal Question Metric and Empirical Cycle methods. The different steps
of these methods are integrated in various places in the survey (see figure 3.2
for an overview). The structure of the chapters maps to the structure of the
research.

Figure 3.2: Research approach

Research plan

The basis for the research is described in the research plan. This research plan
includes (a) the research questions (See Section 1.2.1), (b) a hypothesis (See
Section 1.2.2) and (c) a proof-of-concept of the research. From the perspective
of GQM the goal is the answer to the main research question, namely the answer
to ”how can the post-release Defect Density be estimated based on the Test
Level Quality? The first two steps (observation and induction) of the empirical
cycle were also performed at the beginning of the study. Namely, by writing the
research questions, hypothesis and performing a proof-of-concept of the research.
This proof-of-concept was a feasibility study for the research.

22

Literature study

After completing the research plan a literature study has been executed (See
Chapter 2). The purpose of this survey was twofold. Namely (a) to obtain
more information about previously conducted studies, but also (b) to obtain
information used for the construction of the formal model.

Formal model for the research

Based on the information obtained in the previously executed steps, a formal
research model has been established (See Chapter 4). By the start of the spec-
ification of this model, questions for the GQM method are formulated. The
model also incorporates the software metrics. These metrics are also part of the
GQM method. Based on these steps the data collection and data analysis are
performed.

Data collection and analysis

The data collection and data analysis steps are part of the empirical cycle (See
Chapter 5). The collection of empirical data is called the deduction step. The
validation to see if the results match the hypothesis (that is described in the
research plan) is called the testing step.

Threats to validity

In the first cycle in the evaluation step it has been noted that the data quality of
the first project analyzed was not good enough (See Chapter 6). On that basis
the data collection model has been adjusted, namely additional information
has been gathered to learn more about data quality. Based on this additional
gathered information conclusions can be drawn more precisely. The empirical
cycle is reiterated for every project that is analyzed.

Conclusions

Finally the conclusions are drawn (see Chapter 7), but the advice for further
research is also described.

23

Chapter 4

Formal model for research

This chapter gives an answer to the first sub question, namely ”How are the Test
Level Quality and the post-release Defect Density defined?” Using the Goal Ques-
tion Metric approach sub-questions are formulated and related metrics (Test
Level Quality and Post-Release Defect Density) are established.

4.1 Application of GQM approach

The purpose of using the Goal Question Metric approach (See Section 2.4) is to
answer the main research question. After formulating the problem description
the goal is formulated. In short, the goal is to estimate the quality of the product
(expressed as the number of defects per 1000 lines of code) based on the quality
of the test levels. In this way the risks of going live with the product can be
estimated.

The two sub-questions posed to help to answer this question are formulated.
First, how can the quality of the test levels be determined? The metric defined
that is used to answer this question is the Test Level Quality. And second, how
can the quality of the product determined? The post-release Defect Density is
used as a metric for expressing the quality of the product.

The following sections give the formal definitions of these software metrics.

4.2 Test Level Quality

The calculation of the Test Level Quality is closely related to the definitions of
a defect, a test level and the relation between them. Therefore, first a definition
is given of these three elements before the definition of the Test Level Quality
is described.

24

4.2.1 Defects

During a development and test process zero or more pre-release defects will be
found. We call this set of pre-release defects Dpre−release. There are also defects
that are found in the production environment. This set of defects is called the
post-release defects (or operational defects) Dpost−release. (See also definition
4.2.1).

Definition 4.2.1. Let set Di = 〈d1, ..., dn〉 where

• defect d is a flaw in a component or system that can cause the component
or system to fail to perform its required function. A defect, if encoun-
tered during execution, may cause a failure of the component or system.
Pre-release defects are identified during the development and test process.
Post-release defects are identified after the delivery to the production en-
vironment.

• i indicates in what stage the defects in the set are identified, i ∈ 〈pre −
release, post− release, both〉

4.2.2 Test levels

During the development and test phase there are several TMap test levels dis-
tinguished. These test levels can be determined based on the Master Test Plan.
A test level has some characteristics: (a) each test level has a goal to find a
specific type of pre-release defects and (b) each test level is normally carried out
by a specific tester (or team of testers) for that test level.

Definition 4.2.2. Let set TL = 〈l1, ..., ln〉 where

• test level l is a group of test activities that are managed and executed
collectively

• n is the sequence number of the test level (used by data collection)

4.2.3 Relation between defects and test levels

Every pre-release defect will be found in a specific test level, formally defined
in the following definition.

Definition 4.2.3. Let predicate F (dn, ln): defect dn is found at test level ln
where dn ∈ DPre−release, ln ∈ TL, where DPre−release = 〈d1, ..., dn〉, TL =
〈l1, ..., ln〉

For example: an end user has found a null pointer exception (defect d21)
during the user acceptance test (l3).

Each test level has a goal (as described in the Master Test Plan) to find
a certain type of pre-release defects. Each pre-release defect can be classified
at which test level it should have been found. Below is the formal definition.
Section 4.4 further elaborates the process that determines in which test level a
pre-release defect should be found.

25

Definition 4.2.4. Let predicate M(dn, ln): defect dn must be found at test
level ln where dn ∈ DPre−release, ln ∈ TL, where DPre−release = 〈d1, ..., dn〉,
TL = 〈l1, ..., ln〉

Test levels can be organized as subsequent stages, but can also be organized
as parallel stages. This research investigates if a pre-release defect is identified
too late based on how the test levels are organized, therefore it is required to
know how the test levels are organized.

Definition 4.2.5. Let predicate T (ln, lm): test level ln is executed before test
level lm where ln ∈ TL and lm ∈ TL, where TL = 〈l1, ..., ln〉,

If a pre-release defect dn is found at test level n (F (dn, ln) is true) and that
pre-release defect should have been found at test level m (M(dn, lm) is true),
than it is possible to determine if a pre-release defect is found too late. This can
be determined as follows: when T (lm, ln) is true then the defect is found too
late. For every defect in the Defect Registration System the research determines
if a defect is found too late or not.

There are two special cases of pre-release defects:

• There are pre-release defects that are found too early. An example: there
are pre-release defects related to the integration of components that are
found in the System Test test level. According to the goals of the test
levels in the Master Test Plan that type of pre-release defects should be
found in the Integration Test. This kind of defects is not considered during
our research. The research takes into account only the defects that are
found too late. This is because it is expected (hypothetically) that the
post-release Defect Density does not increases or decreases when there are
more pre-release defects found earlier. Hypothetically the efficiency of the
test process increases when more defects are found in the correct test level.

• There are also pre-release defects that are identified in a test level parallel
to the test level where it should have been found. Each test level l has
a sequence number. The sequence number indicates the sequence of the
test levels in the set TL. Based on these sequence numbers it can be
determined whether a defect is found too late. The sequence numbers
assigned are validated by the project members.

4.2.4 Test Level Quality

The Test Level Quality per Test Level TLQi is the extent to which the pre-
release defects are found at a later test level beyond the test level where it
should be found. The TLQi is expressed using an ordinal scale. The TLQi can
have the following values 5 = Very good, 4 = Good, 3 = Moderate, 2 = Bad,
1 = Very bad. In terms of significance it is better to choose an ordinal scale
instead of an other scale. Based on the gathered data during the data collection
steps, the Test Level Quality TLQi per test level l can be calculated.

26

Test Level tooLate(li) shouldBeFoundIn(li)TLQi

Developer test 10 20 3 (Moderate)
System test 5 22 4 (Good)
Factory Accep-
tance test

2 20 5 (Very
good)

User Accep-
tance test

0 3 5 (Very
good)

Table 4.1: Example of Test Level Quality calculation

Definition 4.2.6. Let function TLQi =

(
1− tooLate(li)

shouldBeFoundIn(li)

)
·5 where

• i is the sequence number of the test level

• tooLate(li) is a function that calculates all the pre-release defects that
should be found at test level li, but are found at a later test level

• shouldBeFoundIn(li) is a function that calculates all the pre-release de-
fects that should be found at test level li

• The TLQi can only be calculated when the function shouldBeFoundIn(li)
has a result greater than zero

An example: A software development project distinguishes four different
test levels, namely the Developer Test, the System Test, the Factory Acceptance
Test and the User Acceptance Test. For every test level tooLate(li) is calculated
and shouldBeFoundIn(li) is calculated, and then based on that two values the
TLQi is calculated (See table 4.2.4).

The overall Test Level Quality TLQ can also be calculated. The value of
the overall TLQ is expressed with the same ordinal scale.

Definition 4.2.7. Let function TLQ =

1−

n∑
i=1

tooLate(li)

n∑
i=1

shouldBeFoundIn(li)

 · 5
where

• i is the sequence number of the test level

• n is the maximum sequence number of the test level

• tooLate(li) is a function that calculates all the pre-release defects that
should be found at test level li, but are found at a later test level

• shouldBeFoundIn(li) is a function that calculates all the pre-release de-
fects that should be found at test level li

• Test levels with shouldBeFound(li) = 0 should be skipped in this calcu-
lation.

27

4.3 Post-release Defect Density

The post-release Defect Density is a metric that is comparable across different
projects. The post-release Defect Density is a quality indicator for the Product
Quality that is described in Section 2.1.

Why has Defect Density been chosen? It is possible to measure only the
identified post-release defects. But it will be not correct to compare only this
number of post-release defects. For example, a product with 5 million source
lines of code (SLOC) will probably contain more defects than a product with
100 source lines of code (SLOC). It can also be argued that the complexity
may affect the number of identified post-release defects [22]. This research only
analyses administrative systems that are developed within the software factory
Endeavour. It is therefore assumed that the complexity of these systems is
equal. In this study the defect density is used as the indicator for the Product
Quality.

Only the total number of added or modified source lines of code are used by
the calculation of the post-release Defect Density. When maintenance projects
are analyzed; it is not realistic to use the total number of source lines of code
for the whole product. When using the KSLOC for the whole product the
DDPost−release will be very low. Therefore the research uses the number of
added or modified SLOC.

Definition 4.3.1. Let Defect Density DDPost−release =
|DPost−release|

KSLOC
where

• |DPost−release|: is the total number of post-release defects, where DPost−release

is the total set of found post-release defects in the first month after delivery
into the production environment.

• KSLOC: are the total number of added or modified SLOC, where SLOC
are the total number of 1000 source lines of code.

During this research the number of post-release defects is only measured for
the first month after delivery into the production environment.

When the Defect Density is zero, it indicates the best possible Product
Quality based on the quality indicator Defect Density. This is because the
product contains no defects. If the Defect Density increases, the Product Quality
decreases, namely there are more defects per 1000 source lines of code.

4.4 Defect classification

During this research the defect types are classified based on a combination
of Orthogonal Defect Classification [9] and Personal Software Process [20] (See
Section 2.2). This choice has been established by doing some research. Based on
the methods ODC and PSP (DCA doesnt have a list with defect types), twenty
random defects are classified independently by two people. The classification by
ODC and PSP lead to the same results, namely 70% of the defects were classified

28

the same by both people . Through a combination of the defect types of both
methods the percentage of defects that get the same defect type classification
by both people increased to 90%. Therefore during this research a combination
of PSP and ODC is used. See Appendix A.1 for a comprehensive description of
the defect types used.

In which test level should a defect of a specific defect type be found

The complexity now moves to the establishment of the classification in which
test level a defect type should be found, i.e. the function M(d, l) as defined in
the preceding paragraph (see 4.2). Based on a MTP a table as specified below
can be made. Based on this table it can be determined which types of defects
should be found in which phase. For example checking defect types must be
found in the Developer Test (test level l1). When these types of defects are
found in the FAT test level (l2), then these defects are found too late.

 Defect types

B
u

il
d

 /
 p

ac
k

ag
e

D
o

cu
m

en
ta

ti
o

n

E
n

v
ir

o
n

m
en

t

In
co

rr
ec

t
re

q
u

ir
em

en
ts

S
y

n
ta

x
 /

 S
ta

ti
c

C
h

ec
k

in
g

A
ss

ig
n

m
en

t

D
at

a

In
te

rf
ac

e

T
im

in
g

In
co

rr
ec

t
fu

n
ct

io
n

al
it

y

T
es

t
L

ev
el

s

Developer Test ⦁ ⦁ ⦁ ⦁

System Test ⦁ ⦁ ⦁ ⦁

Functional

Acceptance Test

 ⦁

System Integration

Test

 ⦁ ⦁

User Acceptance

Test

 ⦁

Figure 4.1: Example table for classifying defects in which test level they must
be found (M(d, l))

In the above table there are also a number of defect types that can be found
in multiple test levels, for example, the defect type Build / Package. More
formally the argument l in the function M(d, l) can get two different values,
according to the figure above. In most cases it is clear which test level should
be chosen. In the case when it is unclear which test level should be chosen the
first test level is chosen [10].

29

4.5 Concluding remarks

The formal model for the research gives the formal definitions of the Test Level
Quality and the post-release Defect Density. This provides the base for carrying
out the empirical research. Besides the definitions this formal model also gives
information on how the metrics can be calculated.

30

Chapter 5

Research

Using the formal model for the research described in the previous chapter, the
following sub-question can be answered: What is the relationship between the
Test Level Quality and the post-release Defect Density? To answer this question
an empirical study was conducted. And the data from four different projects
is analyzed. The results of this empirical research and preliminary findings are
described in this chapter.

5.1 Projects analyzed

This research will analyze four different projects. These four projects are all
conducted with the software development line Endeavour (See Section 1.1).
During the development phase of each project the same team was involved
and they are creating a new version of the same product in each release.

The product that is developed is a portal that is used to sell insurances via
a portal and a service layer. This service layer communicates with several other
components, for example a mainframe or external hosted services. The system
supports the primary business. Currently the portal is used by approximately
3000 employees. And the product consists of approximately 3.8 million lines
of code (including test code and generated code) and about 50 major or minor
components.

The team that worked on the project consists of a project leader, an informa-
tion analyst, four developers and a system tester. The principal of the various
releases is the functional management department. This team consists of about
10 people. This team is also responsible for the execution of acceptance tests.
In addition, the user acceptance tests are carried out by the end users of the
system. There is also a service desk within the organization where production
disruptions (or incidents) are reported by end users.

31

5.2 Research considerations

For all these projects different research tasks are carried out (See Appendix A
for a detailed description). In subsequent sections these steps are described. In
these sections the focus is on describing the choices made.

5.2.1 Determine test levels

During this step the test levels are determined based on the Master Test Plan.
More formally: the set TL is determined (See Section 4.2.2). Additionally it is
determined which types should be found in which test level. This is documented
in the decision table defect types versus test levels (See Figure 4.1). Both the
set TL and the decision table defect types versus test levels are reviewed by a
team member.

5.2.2 Classify defects

When the set TL and the decision table defect types versus test levels are deter-
mined every defect can be classified. For each defect five aspects are determined
by the investigator, namely:

1. The defect type (See Section 4.4). 10% of the defects is doubly classified
by an independent researcher (See Section 6.3);

2. Determine in which test level a defect of a specific defect type should be
found. More formally stated: determine the M(d, l), based on the decision
table defect type versus test levels;

3. Determine whether a defect is found too late;

4. Determine whether code was assigned for resolving the defect

5. Determine whether the defect registration system is provided with under-
standable comments for resolving the defect.

During the second iteration of the empirical cycle it is determined that the
fourth and fifth aspect mentioned above should also be determined for every
defect. In this way the researcher gets more insight into the data quality of the
defect registration system. Thereby, the researcher also gets more insight into
the risk of misclassification.

5.2.3 Source lines of code

During a test level new defects can be introduced by resolving a defect or by
adding, modifying or deleting code. This could impact the Test Level Quality
of previous test levels negatively. Example: During the User Acceptance Test a
defect is fixed that leads to a new System Test defect. This newly introduced
System Test defect is found during the User Acceptance Test. This new defect

32

is then classified as being too late. This can eventually lead to problems in
the results of this research. So there is a need to get more insight into the
introduction of new defects.

Adding, changing or removing the code may lead to the introduction of
new defects. Therefore, during the development and testing process it is also
monitored weekly (a) how much code has been added, changed or deleted, and
(b) how many defects are solved during a week. This information can be used
to reveal how many new defects are possibly introduced.

The number of added, changed or deleted lines of code can be determined
from the data warehouse. By default the number of added lines of a branch
operation is for example also part of this summation. The same is true for
generated lines of code. This may lead to biased results; this is because it
seems that in one week much new code is written, but the real reason is that
a developer executes a branch operation. Therefore, some types of change sets
are not included in this summation of the number of lines of code, namely:

• Change Sets;

• Generated code;

• Data files;

• Executable.

These exclusions are determined for each project based on a change set analysis.
All change sets with more than 500 added, modified or deleted lines of code are
analyzed. In this way the filters are calibrated.

5.2.4 Analysis of classified defects

Based on the steps above the software metrics can be calculated as described in
the previous chapter. The following metrics are calculated:

• Test Level Quality per test level;

• The overall Test Level Quality;

• The post-release Defect Density;

• Total number of modified source lines of code.

5.2.5 Total number of post-release incidents

Based on the incident registration system the total number of reported post-
release incidents (or failures, See Section 2.2) can be calculated per week. These
post-release incidents are reported to the Service Desk by the end users of the
product. It is possible that a post-release incident is reported several times
by different users. Section 5.2.6 describes how to determine the defects that
are introduced by the project. For over one year the total number of reported

33

post-release incidents is calculated per week. (See the blue line in the chart in
Figure 5.1) This chart also displays the release times of the four projects with
the letters A, B, C and D. The red line indicates the average number of reported
post-release incidents.

Figure 5.1: Total number of reported post-release incidents per week versus
release moments

Based on this chart the following conclusions can be formulated:

• When a release is installed in production, an increase in the number of
reported post-release incidents is visible;

• The degree of elevation (height of the peak minus the average that is
displayed on the red line) in the total number of reported incidents varies
from release to release;

• After the release is taken into production it takes 2 till 4 weeks before the
number of reported post-release incidents per week is back to the average
level (indicated with the red line);

• The average number of post-release incidents is increasing. The portal
and service layer contains more functionality and will therefore contain
more errors.

5.2.6 Post-release defects

Based on the incident registration system it is manually determined which de-
fects were introduced by the release. This is done only for the first month after
the release is taken into production. The choice to monitor only one month is
based on the observed findings in the previous section, namely after the release
is taken into production it takes 2 till 4 weeks before the number of reported
incidents per week is back to the average level.

Finally the post-release Defect Density can be calculated.

34

Test Level Goal Startdate Enddate
Developer Test Find problems in the package

to deliver. During this level a
developer find mistakes that
have to do with the robust-
ness / correctness of the code.

1-3-2010 26-3-2010

System Test Verifies if the product is built
according its specifications.
These specifications are de-
scribed in the functional de-
sign.

15-3-2010 3-4-2010

Functional Ac-
ceptance Test

A functional manager vali-
dates if the product is built
according its expectations.

19-4-2010 10-5-2010

System Integra-
tion Test

Verifies if the product inte-
grates correctly with other
systems, for example the
Siemens mainframe or the
premium calculation engine.

10-5-2010 24-5-2010

User Accep-
tance Test

An end user validates if the
product is built according its
expectations.

24-5-2010 19-6-2010

Table 5.1: The test levels used for project A

5.3 Research results of project A

In this section the results of the analyzed project A are described. See appendix
C for a detailed description of all four projects.

5.3.1 Test levels

Within this project there were five different test levels distinguished. These test
levels were determined based on the Master Test Plan. The different test levels
are displayed in table 5.1.

After the test levels are determined, a decision table is constructed which
shows which defects of one particular type of defect should be found in a given
test level (See Figure 5.2)

5.3.2 Analysis of defects

First, all the defects are analyzed as described in section 5.2.2. Appendix C
contains all of the research data used. Also the code churn is weekly collected.
The chart in Figure 5.3 gives an overview of these results, and it provides more
information about the following aspects:

35

 Defect types

B
u

il
d

 /
 p

ac
k

ag
e

D
o

cu
m

en
ta

ti
o

n

E
n

v
ir

o
n

m
en

t

In
co

rr
ec

t
re

q
u

ir
em

en
ts

S
y

n
ta

x
 /

 S
ta

ti
c

C
h

ec
k

in
g

A
ss

ig
n

m
en

t

D
at

a

In
te

rf
ac

e

T
im

in
g

In
co

rr
ec

t
fu

n
ct

io
n

al
it

y

T
es

t
L

ev
el

s

Developer Test ⦁ ⦁ ⦁ ⦁

System Test ⦁ ⦁ ⦁ ⦁

Functional

Acceptance Test

 ⦁

System Integration

Test

 ⦁ ⦁

User Acceptance

Test

 ⦁

Figure 5.2: Decision table defect types versus test levels

• The defects that are not resolved yet per week. The defects have then been
broken down by defect type. See legend for the different defect types;

• The number of source lines of code that are added, changed or removed
per week;

• The test levels;

• The date on which the product is delivered to production (indicated with
the green line).

Based on this chart the following conclusions can be formulated:

• At the beginning of the project more code is changed. This is in confor-
mance with the expectations; because then the functionality of the product
is built;

• After delivery to production there are still errors in the product;

• During the test phase there were minimal code changes;

• There are many defects with the defect type incorrect functionality and
environment. There still exist defects of this type at the end of test phase.

36

This will probably lead to a poor Test Level Quality; this is because these
defects are found too late. This is based on the decision table test level
versus defect types.

After that, the chart can be created, which is displayed in Figure 5.4. The
chart is similar to the chart in Figure 5.3, only this chart indicates at what stage
a defect of a particular defect type should be found. Based on this chart it is
possible to see how many defects that should have been found in the System
Test phase are still open after the System Test phase is closed. This also applies
to other phases.

5.3.3 Post-release defects

A total of eight identified post-release defects is the result of this release. These
are determined by analyzing all the incidents that have been registered in the
defect registration system in the first month of production. Based on the set
of post-release incidents the set with post-release defects is identified. This is
validated by a team member. An observation is that the number of reported
incidents rose to around 140 incidents per week in the first week of production
(See figure 5.5).

5.3.4 TLQ versus post-release Defect Density

For these results see the next section.

5.4 Comparison between projects

The study has analyzed four different projects. The results of these projects are
compared to find a relationship between the TLQ and the post-release Defect
Density. The results of all the projects are listed in Table 5.2 below.

Based on this table the following conclusions can be formulated:

• The post-release Defect Density halves when the Test Level Quality in-
creases from Very Low to Low;

• The Test Level Quality of projects B, C and D are almost equal, in all
three projects the Test Level Quality is classified as Low. The post-release
defect density is also almost equal. The Test Level Quality of project A is
much lower than the other projects. This also leads to higher post-release
Defect Density;

• The cause of the lower Test Level Quality of project A is known. After
project A there was a new team member, namely a new System Tester.

• As the post-release Defect Density increases, the number of reported in-
cidents increases also when this is compared to the average number of
reported incidents;

37

Property Project
A

Project
B

Project
C

Project
D

TLQ Very Low
(85% too
late)

Low (59%
found too
late)

Low (69%
found too
late)

Low (55%
found too
late)

Modified source lines of
code

3100 3600 4500 4000

Total number of pre-
release defects

41 83 85 93

Number of pre-release de-
fects found too late

35 49 59 52

Pre-release Defect Density 13 defects
/ 1000
SLOC

22,6
defects
/ 1000
SLOC

19 defects
/ 1000
SLOC

23 defects
/ 1000
SLOC

The average number of
reported incidents is in-
creased by:

80 30 20 35

Total number of post-
release defects

8 6 5 7

Post-release Defect Den-
sity

3,0 de-
fects /
1000
SLOC

1,6 de-
fects /
1000
SLOC

1,1 de-
fects /
1000
SLOC

1,7 de-
fects /
1000
SLOC

Table 5.2: The results for project A, B, C and D

38

• As the pre-release Defect Density decreases, the post-release Defect Den-
sity increases;

• The Test Level Quality is pretty low for the four projects. The main
reason for this is that many Developer Test and System Test defects are
found too late.

5.5 Concluding remarks

In the context of the projects analyzed the post-release Defect Density halves
when the Test Level Quality increases from Very Low to Low. At present there
were no projects with a Test Level Quality classified as Medium, High or Very
High. Therefore, on that end of the Test Level Quality spectrum, no conclusion
can be drawn. Based on the results so far described in section 5.4 there is an
indication that the post-release Defect Density can be estimated based on the
Test Level Quality. There is need for further empirical research, on this and
also on other projects, to further explore this relationship (See Section 7.2).

39

Figure 5.3: Possible relation between post-release Defect Density and Test Level
Quality

40

Figure 5.4: Possible relation between post-release Defect Density and Test Level
Quality

41

Figure 5.5: Number of reported incidents for project A

42

Chapter 6

Threats to validity

But which other factors can have an influence on the results of the research
project? In order to draw meaningful conclusions an answer to this question
is necessary. Also a clear understanding of the quality of the data is required.
There is also a possible risk of the occurrence of research bias. What measures
are taken to control these aspects is described in this chapter.

6.1 Influence of other factors

What is the influence of all the factors that were identified during the literature
survey (See Section 2.6) during this research? Through interviews data has
been collected about the other factors within the project. The results of these
interviews are used to indicate to what extent the other factors can affect the
conclusions drawn. The data collection forms of Freimut [18] are used during
this research. Freimut creates a questionnaire (See appendix B) that is used
to gather information about the other factors. Due to time constraints the
interviews are limited to interviewing two team members per project.

The research analyzes four projects that are executed in the same context,
namely four maintenance projects done by the same team for the same product
(See also section 5.1). The assumption is that the context of all of the four
projects is equivalent; this can be confirmed by the data collected during the
interviews (See section appendix B).

Research data

Based on interviews the following can be concluded with regard to the different
areas:

• Specification and documentation process: During the four projects, this
aspect stayed constant. There were no changes in the team or the product.
In addition, there were no improvements which had a significant influence
on this area;

43

• New functionality : During the four projects, this aspect stayed constant.
There were no changes in the team or the product. In addition, there were
no improvements which had a significant influence on this area;

• Design and development process: During the four projects, this aspect
stayed constant. There were no changes in the team or the product. In
addition, there were no improvements which had a significant influence on
this area;;

• Testing and rework : Only project A has lower testing quality according
to the questionnaire. The other projects have the same testing quality;

• Project Management : During the four projects, this aspect stayed con-
stant. There were no changes in the team or the product. In addition,
there were no improvements which had a significant influence on this area;

It can be concluded that only the factor testing and rework deviates during
project A. The root cause of this was that a new employee took on the role of
System Tester while another employee left the role of System Tester.

Additionally, during the research the data from a completely different project
is also analyzed. The formal model for the research described in section 4 is also
applicable for this project without any modifications. However, many factors
differ in this project compared to the other four projects. Examples of the
differences were (a) the method of capturing the requirements, (b) working with
an iterative project management approach instead of the waterfall approach.
In an iterative approach the defects must be found in the same iteration as
they were introduced. It was not possible to reproduce this information based
on the Defect Registration System because this data was not captured in the
registration system. By taking this information as a part of the template in the
defect registration system it would be easy to do this analysis. Within the scope
of this study it was not realistic to take this analysis into account.

6.2 Data quality

During the preparation of the defect classification model it has been found that
the cause of erroneous defect classification for a large part (three quarters)
was that the defects in the Defect Registration System had not been properly
updated. Erroneous defect classification means that the researcher and the
project member classify the defect differently. If the Defect Registration System
has not been properly updated it either means that (a) no Code Check-in was
linked by resolving the defect or (b) where a Code Check-in was assigned the
check-in comments are missing.

Based on this information it is possible to determine the risk of misclassifi-
cation for each defect. So it is an option to remove the defects with a higher
risk of misclassification. But what does this mean for the representativeness of
the used set of defects?

44

Provisioned with
meaningful com-
ment

Not provisioned
with meaningful
comment

Code check-in
assigned

25 defects 1 defects

No code check-in
assigned

6 defects 9 (21%)

Table 6.1: Data Quality for project A

Provisioned with
meaningful com-
ment

Not provisioned
with meaningful
comment

Code check-in
assigned

37 defects 2 defects

No code check-in
assigned

37 defects 7 (8%)

Table 6.2: Data Quality for project B

Research data

Table 6.1, 6.2, 6.3 and 6.4 provide more insight into the Data Quality. The risk of
misclassification is higher when resolved defects do not have their Code Check-
in linked and do not have meaningful comments. This applies to 14% of all the
defects in all four of the projects. One possibility would be to eliminate these
defects from of the set of defects to analyze. But what would that say about
the representativeness of the set to be analyzed? The next section describes
results in which a percentage of 85% of the defects are classified the same by
the researcher and an independent team member. Based on this information the
defects with a higher risk of misclassification remain a part of the research. For
upcoming projects it would be better to register the defect type when resolving
the defect, then more is known about the background of that defect.

Provisioned with
meaningful com-
ment

Not provisioned
with meaningful
comment

Code check-in
assigned

36 defects 6 defects

No code check-in
assigned

24 defects 19 (22%)

Table 6.3: Data Quality for project C

45

Provisioned with
meaningful com-
ment

Not provisioned
with meaningful
comment

Code check-in
assigned

66 defects 0 defects

No code check-in
assigned

19 defects 8 (9%)

Table 6.4: Data Quality for project D

6.3 Research bias

During this study the defect classification is performed by the researcher. A
possible threat to validity is called research bias. Research bias occurs when
the researcher influences the results of an investigation to suggest a certain
conclusion. For example, classifying the defects in such a way as to make the
hypothesis correct. To prevent this, the following measurement is taken: 10%
of the defects are also classified by an independent person. This person was a
project member of the project that is analyzed. This 10% percent of the defects
can be compared with the results of the researcher. In this way it is possible
to measure to what extent the classification of the researcher differs from the
classification of the project member.

Research data

Of the 10% of the defects that are classified by both the researcher and the team
member, Table 6.5 gives the percentages of the defects that are classified as a
defect of the same defect type. The difference in the classification of some of the
defects was caused by the fact that the team member remembered information
that was not registered , and based on that information he chose another defect
type. Therefore it would be better for upcoming projects to register the type of
defect when resolving the defect.

Because 15% of the defects are not properly classified, the result of the
calculation of the Test Level Quality can differ. This is because the tooLate(li)
component in the calculation of the Test Level Quality is impacted; this is
because this component is based on the classification of the defect types. The
tooLate(li) component can be 7.5% higher or 7.5% lower. This is based on the
15% of the defects that are not classified the same. It is assumed that when
all the defects are doubly classified; the percentage of defects that are classified
the same will still be 85%. When this uncertainty is included in the calculation
of the Test Level Quality, it is possible to recalculate the TLQ with an error
range. The upper range is tooLate(li) + 7.5% and lower range is tooLate(li) -
7.5%. See for this results also Table 6.5.

Only the lower bound of the error range of Project C will leads to another
classification of the Test Level Quality.

46

Fact Project
A

Project
B

Project
C

Project
D

Percentage of defects clas-
sified the same by the re-
searcher and the project
member

100% 83% 80% 89%

TLQ Very Low
(0,4)

Low (2,0) Low (1,5) Low (2,2)

TLQ (-7.5%) Very Low
(0,4)

Low (1,8) Very Low
(1,3)

Low (2,0)

TLQ (+7.5%) Very Low
(1,1)

Low (2,3) Low (1,8) Low (2,4)

Table 6.5: Percentage misclassifications and TLQ with error range

6.4 Concluding remarks

During the research there were some threats to validity; but they are eliminated.
The other factors stay constant for the four projects, except the quality of
the system test is different. However, this has an identifiable cause (a new
employee). The classification of the defects indicates that at on average 85%
of the defects are classified identically by the researcher and the independent
project member. The underlying reason for the misclassifications was that the
project member could remember information that was not registered. It is
therefore important for upcoming projects that this information be registered
while resolving defects. In addition, the quality of the data is good enough
for the investigation to be carried out; 14% of the defects has a higher risk of
misclassification.

47

Chapter 7

Conclusions and further
research

The main question for this study was: How can the post-release Defect Density
be estimated based on the Test Level Quality? A hypothetical answer to this
main question was given in the research plan and repeated in Section 1.2.2.
During this research an empirical study validated the hypothesis; the results are
described in the conclusions. New research issues are described the suggestions
for further research.

7.1 Conclusion

The post-release Defect Density halves when the Test Level Quality increases
from Very Low to Low. This is observed for the four projects that are investi-
gated using an empirical study (See Chapter 5). To support this investigation a
formal research model is created that defines the various terms used (See Chap-
ter 4). This model is necessary for comparing the results of the four projects
with each other. The model contains the definitions of the Test Level Quality
and the post-release Defect Density, but also how these metrics for the different
projects can be calculated. The formal research model can also be used for other
projects.

Other factors can have an influence on the results of the research. These
factors have already been described by other researchers, and they have also
already done some exploratory research. Within the research it is determined
through an interview that these factors for the four projects examined were
constant. Only the quality of the System Test differs. This was, from the
perspective of this study, desirable, because this resulted in another Test Level
Quality for one of the projects. This is reducible in the results.

In addition, the Data Quality of the projects is good enough to carry out the
investigation. In 14% of the defects, the risk of misclassification is higher. It is
possible to identify research bias by an independent classification. The result

48

of classification was that on average 85% of the defects by the researcher and
the independent project member were classified the same. The reason that the
other 15% of the defects were classified incorrectly was that the project member
remembered information that had not been recorded in the defect registration
system. It is therefore important for subsequent projects to do the defect type
classification when resolving the defect, and not after the project is finished (See
Chapter 6).

Let us return to the hypothesis (See Section 1.2.2). Indeed it can be con-
cluded that the post-release Defect Density decreases when the Test Level Qual-
ity increases. However, the conclusion is different from the hypothesis in two
separate aspects:

• The Test Level Quality is Low or Very Low for the four projects. This
contrasts with the expected Test Level Quality of Medium;

• When the Test Level Quality is Low or Very Low this leads to lower post-
release Defect Density than expected. The possible cause could be that
during the first month that the product is in the production environment,
only the post-release defects are monitored.

So the post-release Defect Density can be estimated by using the Test Level
Quality as defined in the formal research model. Currently this is only studied
for the four projects that are executed in the same context. More reference-
projects are needed to indicate that a particular Test Level Quality will lead to
a certain number of defects per 1000 lines of source code.

7.2 Pointers for further research

Due to time constraints everything could not be investigated; this is why there
are still some open issues for further research.

• In this study all of the projects that are examined have a Test Level
Quality of Low or Very Low. Within the same context, projects can be
examined with a Test Level Quality of Medium, High or Very High. To
achieve that, the development and test team should be focused in finding
defects of certain defect types in a particular test level. A first step to this
can be the inclusion of the decision table defect types versus test level in
the Master Test Plan. In addition, during the development and testing
process it should continuously be evaluated whether the defects are found
at the right stage. When the preliminary conclusion of the evaluation is
that defects are still found too late, the process can possibly be adjusted.
Defect Causal Analysis is a good method to carry out this evaluation.

• This research is limited to studies of projects in the same context. The
same empirical research can also be performed for a project in a different
context. The complexity that then arises and must be kept in mind is
that the other factors are probably not constant . It is also wise to have

49

the defect classification done by a project member during the project, so
as to make it a part of the defect registration process.

• This investigation is focused on finding defects before it’s too late. But
what can be concluded when many defects are found too early. It is
hypothetically assumed that in that case too much is being tested. The
tests are not efficiently executed and this results in higher costs. Again,
further follow-up study can be conducted for this question.

50

References

[1] Basili, V.R., Caldiera, G., Rombach, H.D., The goal question met-
ric approach, http://www.cs.toronto.edu/~sme/CSC444F/handouts/

GQM-paper.pdf (16 December 2010)

[2] Basili, V.R., Weiss, D.M., A methodology for collecting valid software en-
gineering data, IEEE Transactions on Software Engineering, pages 728 -
738, 1984

[3] Basili, V.R., Weiss, D.M., Evaluating software development by analysis
of changes: Some data from the Software Engineering Labatory, IEEE
Transaction on Software Engineering, pages 157 - 168, 1985

[4] Batini, C., Scannapieco, M., Data Quality, concepts, methodologies and
techniques, Springer, pages 19 - 49, 161 - 200, 2006

[5] Buijs, A, Statistiek om mee te werken, Wolters Noordhoff, pages 20 - 61,
2002

[6] Cangussu, J.W., Karchich, R.M., Software Release Control using Defect
Based Quality Estimation, International Symposium on Software Reliability
Engineering, pages 440 - 450, 2004

[7] Card, D.N., Learning from our mistakes with Defect Causal Analysis, IEEE
Software, pages 56 - 63, 1998

[8] Chillarege, R., Prasad, K.R., Test and development process retrospective
a case study using ODC Triggers, Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages 669 - 678, 2002

[9] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S.,
Ray, B.K., Wong, M.Y., Orthogonal Defect Classification - “A Concept
for In-Process Measurement”, IEEE Transaction on Software Engineering,
pages 943 - 956, 1992

[10] Damm, L.O., Lundberg, L., Company-wide implementation of metrics for
early-software fault detection, IEEE International Conference of Software
Engineering, pages 560 - 570, 2007

51

[11] Ekanayake, J., Tappolet, J., Gall, H.C., Bernstein, A., Tracking concept
drift of software projects using defect prediction quality, Proceedings of
the 2009 6th IEEE International Working Conference on Mining Software
Repositories, pages 51 - 60, 2009

[12] Fenton, N.E., Software Metrics, a rigorous approach, Publisher: Chapman
& Hall, London, pages 1 - 320, 1991

[13] Fenton, N., Neil, M., A critique of software defect prediction models, IEEE
Transactions on Software Engineering, Volume 25 Issue 5, pages 675 - 689,
1999

[14] Fenton, N., Ohlsson, N., Quantitative analysis of faults and failures in
a complex software system, IEEE Transactions on software engineering,
Volume 26 Issue 8, pages 797 - 814, 2000

[15] Fenton, N., Krause, P., Neil, M., Software Measurement uncertainty and
causal measurement, IEEE Software, July / August, pages 116 - 122, 2002

[16] Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, L., Project data
incorporating qualitative factors for improved software defect prediction,
Third international workshop on predictor models in software engineering,
pages 69 - 79, 2007

[17] Fenton, N.E., Neil, M., Caballero, J.G., Using ranked nodes to model qual-
itative judgments in Bayesian networks, IEEE Transactions on knowledge
and software engineering, Volume 19 Issue 10, pages 1420 - 1432, 2007

[18] Freimut, B., Denger, C., Ketterer, M., An industrial case study of imple-
menting and validating defect classification for process improvement and
quality management, IEEE International Software Metrics Symposium,
pages 19 - 30, 2005

[19] Heemstra, F.J., Kusters, R.J., Trienekens, J.J.M., Software kwaliteit, op
weg naar beter software (in Dutch), ten Hagen Stam uitgevers, pages 3 -
60, 2001

[20] Humprey, W.S., Introduction to the Personal Software Process, Addison
Wesley, pages 1 - 304, 1997

[21] Koomen, Tim, Aalst, Leo van der, Broekman, Bart, Vroon, Michiel, “TMap
Next for result-driven testing”.UTN Publishers, pages 55 - 148, 2007

[22] McConnel, S., Code Complete, a practical handbook for software construc-
tion, Microsoft, pages 463 - 534, 649 - 660, 2004

[23] McConnel, S., Professional Software Development, Shorter Schedules,
Higher Quality Products, More Successful Projects, Enhanced Careers, Mi-
crosoft, pages 1 - 272, 2003

52

[24] Mietes, D.M., Methodological foundation and the research approach,
http://dissertations.ub.rug.nl/FILES/faculties/management/

1994/d.m.mietus/c3.pdf (12 December 2010), 1994

[25] Universiteit van Amsterdam, template for a Masters project, 2010

[26] Vliet, H. van, Software Engineering, Principles and Practice, John Wiley
and Sons, pages 101 - 142, 2002

[27] Westfall, L., 12 steps to useful software metrics, http://www.

westfallteam.com/Papers/12_steps_paper.pdf (16 January 2011)

[28] Weiss, D.M., Basili, V.R., Evaluating software development by analysis
of changes: some data from the software engineering laboratory, IEEE
Transaction on Software Engineering, Volume. SE-11, No. 2, pages 157 -
168, 1985

53

Appendix A

Data collection and analysis

For this research project the data of five projects was collected and analyzed.
The goal of this appendix is to describe as complete as possible the process of
data collection and analysis. By doing this it is transparent how the results
of the research are obtained. In the first section (see A.1) the data collection
process is described. Section ?? describes how the data of the different projects
will be analyzed and compared. For each project the results are documented in
Excel sheets.

A.1 Data collection

In section A.1.1 are the main steps for each project described. The subsequent
sections are refinements of the main steps:

• Defect classification (see section A.1.2);

• Defect type classification (see section A.1.3);

• Classification if a defect is found too late (see section A.1.4).

A.1.1 Main steps

The steps that are depicted in the figure A.1 below are executed for every project
during this research.

A.1.2 Defect classification

All the defects of each project will be classified by the researcher. For every
defect the steps are executed that are depicted in figure A.2. Ten percent of
the defects will also be independent classified by a team member. The results
of both classifications will be compared and reported.

54

Figure A.1: Steps that are executed for the data collection of a project

A.1.3 Defect type classification

Based on the information in Souce Control and the Defect Registration System
the defect type can be determined. For every defect the researcher executes the
flow depicted in the picture A.3 below. For more information about the different
defect types see table A.1.3 and table A.1.3.

55

Figure A.2: Steps that are executed for the classification of a defect

56

Figure A.3: Steps that are executed for the classification of a defect type

57

D
e
fe

c
t

ty
p

e
D

e
sc

ri
p

ti
o
n

C
h

a
ra

c
te

ri
st

ic
o
f

th
e

fi
x

E
x
a
m

p
le

B
u

il
d

/p
ac

ka
ge

E
rr

or
s

in
ve

rs
io

n
co

n
tr

ol
,

ch
a
n

g
e

p
ro

-
ce

ss
or

b
u

il
d

/p
ac

ka
gi

n
g

sy
st

em
.

A
ls

o
m

is
ta

ke
s

in
in

st
al

la
ti

on
d

o
cu

m
en

ta
ti

o
n

b
el

on
gs

to
th

is
d

ef
ec

t
ty

p
e.

C
o
rr

ec
t

p
ro

b
le

m
s

in
ve

rs
io

n
co

n
tr

o
l

sy
st

em
,

ch
a
n

g
e

p
ro

ce
ss

,
b

u
il

d
/

p
a
ck

a
g
in

g
sy

st
em

o
r

in
-

st
a
ll

a
ti

o
n

d
o
cu

m
en

ta
ti

o
n

.

F
o
r

ex
a
m

p
le

(a
)

th
e

w
ro

n
g

ve
rs

io
n

s
o
f

su
b

co
m

p
o
-

n
en

ts
a
re

u
se

d
d

u
ri

n
g

th
e

p
a
ck

a
g
in

g
p

ro
ce

ss
,

(b
)

fi
x
-

in
g

a
n

er
ro

r
d

u
ri

n
g

th
e

b
u

il
d

,
(c

)
w

ro
n

g
la

b
el

s
a
re

se
t

in
S

o
u

rc
e

C
o
n
tr

o
l.

D
o
cu

m
en

ta
ti

on
D

o
cu

m
en

ts
or

co
m

m
en

ts
a
re

m
is

u
n

d
er

-
st

an
d

ab
le

or
w

ro
n

g.
T

h
is

k
in

d
o
f

d
e-

fe
ct

s
d

o
es

n
t

le
ad

to
a

co
d

e
m

o
d

ifi
ca

ti
o
n

.

O
n

ly
co

rr
ec

t
th

e
d

o
cu

-
m

en
ta

ti
o
n

o
r

co
m

m
en

ts
,

n
o
t

so
u

rc
e

co
d
e.

T
h

e
d

o
cu

m
en

ta
ti

o
n

d
o
es

n
t

d
es

cr
ib

e
th

e
fu

n
ct

io
n

a
li

ty
th

a
t

is
b

u
il

t
co

rr
ec

tl
y.

E
n
v
ir

on
m

en
t

D
ef

ec
t

in
th

e
d

ev
el

op
m

en
t

en
v
ir

o
n

m
en

t
or

su
p

p
or

t
sy

st
em

C
o
rr

ec
t

th
e

su
p

p
o
rt

sy
s-

te
m

o
r

av
o
id

th
e

d
ev

el
o
p

-
m

en
t

en
v
ir

o
n

m
en

t
d

ef
ec

t.

F
o
r

ex
a
m

p
le

(a
)

w
ro

n
g

ve
rs

io
n

s
a
re

in
st

a
ll

ed
o
n

d
e-

ve
lo

p
m

en
t

o
r

te
st

in
fr

a
st

ru
ct

u
re

o
r

(b
)

th
e

w
ro

n
g

m
a
in

fr
a
m

e
is

re
fe

re
n

ce
d

b
y

a
se

rv
ic

e
in

th
e

te
st

en
-

v
ir

o
n

m
en

t.
In

co
rr

ec
t

or
m

is
si

n
g

re
q
u

ir
em

en
ts

D
ef

ec
ts

in
fu

n
ct

io
n

al
it

y
ca

u
se

d
b
y

w
ro

n
g

sp
ec

ifi
ca

ti
on

s.
W

ri
te

th
e

m
is

si
n

g
sp

ec
-

ifi
ca

ti
o
n

s
o
r

co
rr

ec
t

th
e

w
ro

n
g

sp
ec

ifi
ca

ti
o
n

s.
T

h
er

ea
ft

er
im

p
le

m
en

t
th

o
se

sp
ec

ifi
ca

ti
o
n

s.

F
o
r

ex
a
m

p
le

in
th

e
sp

ec
ifi

ca
ti

o
n

s
it

’s
n

o
t

d
es

cr
ib

ed
th

a
t

th
e

a
p

p
li

ca
ti

o
n

sh
o
u

ld
h

av
e

th
e

fe
a
tu

re
th

a
t

a
sp

ec
ifi

c
en

ti
ty

ca
n

b
e

d
el

et
ed

.

T
a
b

le
A

.1
:

D
ef

ec
t

ty
p

es
,

p
a
rt

A

58

D
e
fe

c
t

ty
p

e
D

e
sc

ri
p

ti
o
n

C
h

a
ra

c
te

ri
st

ic
o
f

th
e

fi
x

E
x
a
m

p
le

S
y
n
ta

x
/s

ta
ti

c
D

ef
ec

ts
th

at
ar

e
u

su
al

ly
d

et
ec

te
d

b
y

a
co

m
p

il
er

.
C

o
rr

ec
t

a
sy

n
ta

ct
ic

or
co

m
p

il
er

-fi
n

d
a
b

le
st

a
ti

c
se

m
a
n
ti

c
d

ef
ec

t

F
o
r

ex
a
m

p
le

:
th

e
w

ro
n

g
X

M
L

sy
n
ta

x
is

u
se

d
.

C
h

ec
k
in

g
M

is
si

n
g,

w
ro

n
g

or
in

ad
eq

u
a
te

h
a
n

d
li

n
g

of
er

ro
r

ca
se

s.
A

fr
eq

u
en

tl
y

o
cc

u
ri

n
g

p
ro

b
le

m
is

m
is

si
n

g
in

p
u

t
va

li
d

a
ti

o
n

o
f

fu
n

ct
io

n
s.

A
d

d
o
r

co
rr

ec
t

er
ro

r
h

a
n

-
d

li
n

g
o
r

a
d

d
o
r

co
rr

ec
t

fu
n

ct
io

n
in

p
u

t
va

li
d

a
ti

o
n

F
o
r

ex
a
m

p
le

(a
)

th
e

va
lu

e
o
f

a
p

a
ra

m
et

er
o
f

a
fu

n
c-

ti
o
n

is
n
t

va
li

d
a
te

d
o
r

(b
)

a
n

er
ro

r
ca

se
is

n
t

co
rr

ec
tl

y
h

a
n

d
le

d
.

A
ss

ig
n

m
en

t
O

n
e

st
at

em
en

t
d
ef

ec
ts

in
d

a
ta

m
a
n

a
g
e-

m
en

t
or

p
ro

ce
d

u
re

ca
ll

s.
C

o
rr

ec
t

o
n

e
st

a
te

m
en

t.
F

o
r

ex
a
m

p
le

:
(a

)
th

e
u

se
o
f

a
w

ro
n

g
o
p

er
a
n

d
o
r

o
p

-
er

a
to

r
in

ex
p

re
ss

io
n

.
(b

)
A

w
ro

n
g

o
b

je
ct

is
a
ss

ig
n

ed
to

a
va

ri
a
b

le
.

(c
)

A
n

a
ss

ig
n

m
en

t
is

m
is

si
n

g
o
r

d
u

p
li

-
ca

te
d

.
(d

)
A

ca
ll

to
w

ro
n

g
p

ro
ce

d
u

re
.

(e
)

A
m

is
si

n
g

ca
ll

.
D

at
a

D
at

a
th

at
is

u
se

d
b
y

th
e

p
ro

g
ra

m
is

th
e

ca
u

se
of

th
e

d
ef

ec
t.

C
o
rr

ec
t

th
e

d
a
ta

.
F

o
r

ex
a
m

p
le

a
li

st
w

it
h

va
lu

es
d

o
es

n
t

co
n
ta

in
a

sp
e-

ci
fi

c
it

em
.

In
te

rf
ac

e
W

ro
n

g
d

es
ig

n
of

in
te

rf
ac

es
(n

o
t

co
n

fo
rm

sp
ec

ifi
ca

ti
on

s
or

p
ro

gr
a
m

m
in

g
g
u

id
e-

li
n

es
).

C
h

a
n

g
e

th
e

in
te

rf
a
ce

.
F

o
r

ex
a
m

p
le

a
se

rv
ic

e
o
r

d
a
ta

co
n
tr

a
ct

in
te

rf
a
ce

is
in

co
m

p
le

te
,

w
ro

n
g

o
r

in
a
p

p
ro

p
ri

a
te

.

T
im

in
g,

sy
n

ch
ro

-
n

iz
at

io
n

,
n

et
w

or
k

or
h

ar
d

w
ar

e

E
rr

or
s

d
u

e
to

in
fl

u
en

ce
fr

o
m

o
u

ts
id

e
th

e
sc

op
e

of
th

e
p

ro
gr

am
it

se
lf

o
r

ti
m

in
g

is
-

su
es

.

A
d

a
p

t
th

e
p

ro
g
ra

m
to

p
ro

p
er

ly
h

a
n

d
le

th
es

e
in

-
fl

u
en

ce
s.

T
h

e
p

er
fo

rm
a
n

ce
o
f

th
e

a
p

p
li

ca
ti

o
n

d
o
es

n
t

m
ee

t
th

e
sp

ec
ifi

ed
re

q
u

ir
em

en
ts

.

In
co

rr
ec

t
fu

n
ct

io
n

-
al

it
y

(c
or

re
ct

sp
ec

i-
fi

ca
ti

on
s)

D
ef

ec
ts

b
ey

on
d

on
e

st
at

em
en

t
in

fu
n

c-
ti

on
al

it
y.

T
h

e
re

q
u

ir
em

en
ts

a
re

co
r-

re
ct

ly
sp

ec
ifi

ed
.

Im
p

le
m

en
t

th
e

m
is

si
n

g
or

in
co

rr
ec

t
fu

n
ct

io
n

a
li

ty
.

F
o
r

ex
a
m

p
le

in
th

e
sp

ec
ifi

ca
ti

o
n

it
’s

d
es

cr
ib

ed
th

a
t

th
e

a
p

p
li

ca
ti

o
n

sh
o
u

ld
h

av
e

th
e

fe
a
tu

re
th

a
t

p
er

so
n

s
ca

n
b

e
d

el
et

ed
.

T
h

e
a
p
p

li
ca

ti
o
n

d
o
es

n
t

co
n
ta

in
th

a
t

fe
a
tu

re
.

T
a
b

le
A

.2
:

D
ef

ec
t

ty
p

es
,

p
a
rt

B

59

Sequence
number

Name Goal Startdate Enddate Tester

1 Developer
Test

Find checking
type defects

01-04-
2011

01-05-
2011

Jim

2 System
Test

Find defects re-
lated to software
that is built not
conform to the
specifications.

15-04-
2011

15-05-
2011

Jane

3 Factory
Accep-
tance
Test

Find defects re-
lated to software
that is built not
conform to the
expectations.

15-05-
2011

01-06-
2011

Kim

Table A.3: Example of different test levels

A.1.4 Classification of a defect is found too late

How is it determined whether a defect is found too late? For every defect it
is known in which test level the defect was found (F (dn, ln)) and in which test
level it should be found (M(dn, ln)). Each test level l has a sequence number.
The sequence number indicates the sequence of the test levels TL. Based on
this sequence numbers it can be determined whether a defect is found too late.

Example

Defect d21 is found during the System Test level. See table A.1.4 for the different
test levels. The defect d21 is classified as a Checking defect type (see previous
section). Therefor defect d21 should have been found during the Developer Test.
The sequence number of the test level in which the defect d21 is found is 1; the
sequence number of the test level in which defect d21 should have been found is
2; so the defect d21 is found too late.

A.2 Data analysis

The results for the TLQ and post-release Defect Density of each project are
plotted into a graph (see Figure A.4). The study expects to find such a trend
that the graph is displayed.

60

Figure A.4: Possible relation between post-release Defect Density and Test Level
Quality

61

Appendix B

Influence of other factors

The following questionnaire is used to get more information about the influence
of different factors (see figure B.1) on the Defect Insertion and Defect Discovery.
The list is based on the questionnaire that is described by Freimut [18]. The
sections below describe the questions that are asked for the several factors that
are depicted in the picture. Any question can be answered with the following
values (ordinal scale): Very High, High, Medium, Low, Very Low.

Common influences

Specification and

documentation
Design and

development

Testing and rework

Scale of new functionality

implemented

Existing code base

Defect insertion and

discovery

Figure B.1: Causal relationships to defect insertion and defect discovery

62

B.1 Specification and documenation

1. How would you rate the experience and skill set of your team members for
executing this project during the requirements and specifications phase?

2. How would you rate the quality of the requirements given by the client or
other groups?

3. Have all the Requirements, Design Documents and Test Specifications
been reviewed in the project?

4. In your opinion, how effective was the review procedure?

5. What was the review effectiveness in the project for the requirements
phase?

6. In your opinion, is the defect density of spec reviews on the high side?

7. How stable were the requirements in your project?

B.2 New functionality

1. What was the complexity of the new development or new features that
happened in your project?

2. How large was the extent of working on new functionality rather than just
enhancing the older functionalities in your project?

3. For your product domain, would you rate the total no of outputs/inputs
(newly developed / enhanced) as high?

B.3 Design and development process

1. How would you rate the experience and skill set of your team members
for executing this project during the design and development phase?

2. On an average, how would you assess the Quality of code produced by the
team members?

3. What was the review effectiveness in the project for the Design and De-
velopment phase?

4. What is your opinion about the motivation levels of your team members?

63

B.4 Testing and rework

1. How effective was the testing process adopted by your project?

2. What was the level of software test competence of those performing the
unit test?

3. How would you rate the experience and skill set of the independent test
engineers (Integration, functional or subsystem testing, Alpha, Beta)?

4. What was the extent of the defects that were found using formal testing
against the intuitive / random testing?

B.5 Project management

1. What is the coverage of the identified project / process related trainings
as well as trainings identified as per the roles, by the team members?

2. How effective is the projects document management and configuration
management?

3. Has the project planning been done adequately?

4. How many sites/groups were involved in the project.

5. To what extent were the key project stakeholders involved?

6. How good was customer interaction in the project?

7. How would you rate the Vendor / Sub-contractor Management (if appli-
cable)?

8. How would you the rate the quality of internal interactions / communica-
tion within the team?

9. Whats your opinion about process maturity in the project?

64

