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ABSTRACT
Deep learning algorithms have become more prevalent in real-
world applications. With these developments, bias is observed in
the predictions made by these algorithms. One of the reasons for
this is the algorithm’s capture of bias in the data set being used. This
research investigates the influence of using generative adversarial
networks (GANs) as a gender-to-gender data pre-processing step
on the bias and accuracy measured for a VGG-16 gender classifica-
tion model. A cyclic generative adversarial network (CycleGAN) is
trained on the Adience data set to perform the gender-to-gender
data augmentation. This architecture allows for an unpaired domain
mapping and results in two generators that double the training im-
ages generating a male for every female and vice versa. The VGG-16
gender classification model uses training data to produce an accu-
racy that indicates its performance. In addition, the model’s fairness
is calculated using demographic parity and equalized odds to indi-
cate its bias. The evaluation of the results provided by the proposed
methodology in this research shows that the accuracy decreases
when CycleGAN pre-processing is applied. In addition, the bias
also decreases, especially when measured on an imbalanced data
set. However, The decrease in bias needs to be more significant to
change our evaluation of the model from unfair to fair, showing the
proposed methodology to be effective but insufficient to remove
bias from the data set.
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1 INTRODUCTION
The predictive power of deep learning algorithms has led them to
be widely used in real-world applications [6]. A prominent example
of a widely used machine-learning technique is the supervised
learning method, which can, for instance, provide a gender classifier
of images by learning a mapping between an input image and a
corresponding predicted class [12]. An unintended lack of diversity
in the input is a problem observed in using images as data to train
these algorithms [16]. For instance, this unintended lack of diversity
could be introduced by a selection bias in the compilation process
of a data set [24].

Using these data sets could introduce "over-fitting" in the down-
stream training process and lead to sub-optimal behavior in the
real world where complexity and diversity are common. Examples
of this sub-optimal behavior are observed for different types of
training data, like images and word embeddings, induced by the
learned bias existing in the training data [2, 26]. For instance, a
model trained on a biased training data set shows that the activity
of cooking is over 33 percent more likely to involve females than
males [28].

What has been studied is using methods like over-sampling and
prevailing data augmentation methods like rotations, flips, and re-
scales to increase diversity in data sets used for downstream tasks
[26]. In addition, GANs have been used as a data augmentation
method to improve generalizability in Computerized Tomography
(CT) segmentation tasks [20]. However, the impact of using cyclic
GANs to increase data set diversity to reduce bias on downstream
tasks needs to be explored more. This thesis project aims to quantify
this approach’s impact on reducing bias in the downstream task of
gender classification.

In addition to reducing bias, maintaining or increasing the per-
formance of a model trained in a downstream task is also of interest.
Numerous studies have shown that including pre-processing steps
using adversarial networks has increased performance when using
deep neural networks downstream [19]. Using a GAN is described
as one of the most promising modeling techniques for using data
augmentation [27].

This thesis project hypothesizes that augmenting the training
data into different domains will reduce bias and retain potential
model performance on a downstream task. The reduced bias is
hypothesized to be caused by the balance in training examples of
different domains, for example, males and females. This hypoth-
esis will be tested using a balanced and an unbalanced training
data set to perform measurements. The retained performance is
hypothesized to be caused by an increased amount of training data.
A downside of the proposed data augmentation could be decreased
performance on downstream tasks. To make this transparent, the
performance of downstream tasks is also evaluated.

By introducing novel research into the impact of a cycling GAN
on bias in a downstream task and measuring performance impact
as a secondary interest, this thesis project can quantify the effect on
predictive performance. As data augmentation is a pre-processing
technique used to increase downstream performance, the diver-
sification of the data set should ideally not decrease downstream
performance. The difference in performance will be tested by using
baseline measurements.

Obtaining this quantified knowledge benefits both research areas
mentioned before. For bias reduction, it opens up a new avenue of
research into complex methods like configurable data augmentation
using a GAN to generate a diverse data set based on a less-diverse
data set. For the pre-processing field, this research potentially veri-
fies that using a GAN as a data augmentation method increases the
performance on downstream tasks [22]. To make the mentioned
knowledge objectives more concrete, the following research ques-
tion is proposed:

How does pre-processing using GANs as a gender-to-gender data
augmentation step influence the accuracy and bias of a VGG-16 Con-
volutional Neural Network performing a gender classification task?

To answer the research question, it is essential to gather mea-
surements of the impact of the data augmentation method on the
performance and bias of the downstream task of gender classifica-
tion. Thesemeasurements are gathered using a well-knownVGG-16
model architecture adjusted to perform binary classification [23].
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On top of this, it is important to create a data augmentation method
that can perform the gender-to-gender generation. Both these as-
pects have been captured in the following sub-research questions:

1. How can a GAN architecture perform gender-to-gender genera-
tion to diversify a data set of male and female images?

2. What is the baseline performance and bias of a VGG-16 gender
classification model using established data augmentation methods on
images of males and females?

3. What is the performance and bias of a VGG-16 gender classifi-
cation model using a gender-to-gender data augmentation method on
images of males and females?

4. What is the difference in performance and bias of a VGG-16 gen-
der classification model using a gender-to-gender data augmentation
method on an unbalanced data set of males and females?

2 RELATEDWORK
The research gap described in the previous section indicates a goal
of mitigating bias without reducing downstream performance. To
quantitatively assess the bias reduction, the research questions
mention both VGG-16 gender classification models and the image-
to-image translating CycleGAN model. These areas of research are
explored in this section.

2.1 Gender classification
Deep neural networks have demonstrated excellent performance
in recognizing the gender of human faces [14]. Eidinger et al. use
a standard linear SVM trained on the Local Binary Pattern (LBP)
and Four-Patch LBP features (FPLBP) extracted from the Adience
data set. They show a 77 percent accuracy when training on the
near-frontal faces [5]. They, however, add that their tests leave
room for future work as a drop in performance is observed when
using the Adience data set as a benchmark. As the Adience data set
is made available, it will be considered for this research.

Hassner et al. report a 79.3 percent accuracy when using the
same features but adjusting the Adience data set by a Frontalization
process. This process detects facial features and rotates them to
create a frontal face [9]. This accuracy is improved upon by Levi
and Hassner using a deep-convolutional neural network for gender
classification [15]. They used a network architecture comprising
three convolutional layers and two fully-connected layers with a
small number of neurons. They used all rotations of the original
images in the Adience data set to show the performance of the
network architecture instead of the improved performance by pre-
processing. This approach has been shown to have an 86.8 percent
accuracy.

Dehgan et al. improve on this by using a larger amount of data
to train on though it is unclear how this data set was aggregated
[3]. In addition, it is unclear how the images’ labels were provided.
They state that a team of human annotators was used through a
semi-supervised procedure. On top of this, the data does not seem to
be provided, which is why this data set is not considered further for
this research. For pre-processing the images, they use techniques

that perform horizontal flips and random crop augmentation. They
apply a specific but undisclosed deep network architecture for
gender classification on the Adience benchmark and obtain an
accuracy of 91 percent.

Lapuschkin et al. considered the influence of model initialization
with weights per-trained on a real-world data set. Their results were
reported using a VGG-16 model, pre-trained on the well-known
ImageNet and IMDB-WIKI data sets. In addition, it was fine-tuned
on the Adience data set using both face alignment techniques si-
multaneously [14]. They state that three major factors contribute
to performance improvements on the gender classification task. (1)
Changes in architecture. (2) Prior knowledge via pre-training. (3)
Optional data set preparation via alignment pre-processing. The
VGG-16 model consists of 13 convolutional layers of small kernel
size followed by two fully connected layers. Using the VGG-16
model, an accuracy of 92.6 percent is attained using a weight ini-
tialization based on ImageNet.

Improved results on the gender classification task have also been
published. These, however, use the improved ResNet model archi-
tecture to increase accuracy [13]. As the difference in performance
and bias is to be measured based on pre-processing techniques, the
model architecture is kept constant in both measurements, and this
is why performance and bias using models that differ from VGG-16
on the Adience data set are not considered further for this research.

2.2 CycleGAN
Image-to-image translation using a cycle-consistent adversarial
network was introduced by Zhu et al. [29]. This method makes
it possible to perform unpaired image translation without paired
training data, as obtaining this data can be difficult and expensive
[29]. They apply this method to various applications, including
collection style transfer, object transfiguration, season transfer, and
photo enhancement [29].

The cycle-consistent adversarial network is an architecture built
from two GANs. These networks are optimized using a loss function
that first includes an adversarial loss allowing it to learn the domain
mapping. Second, it includes a cycle consistency and identity loss
that ensure that the source and generated results are related. This
additional loss optimizes the generators to produce a translation
instead of a random output in the target domain.

Almahairi et al. build on this idea by introducing an augmented
CycleGAN, which can perform many-to-many mapping [1]. They
capture variations in the generated domain by learning stochastic
mapping by inferring information about the source which is not
captured in the generated result. Qualitative results show the ef-
fectiveness of the many-to-many mapping approach in generating
multiple females for a given male and vice versa. This research
shows the viability of successfully generating male-to-female and
female-to-male images [1].

Using a CycleGAN architecture as a data augmentation method
for pre-processing images has already been shown adequately for
the task of CT segmentation [20]. They use the GANs to render
a non-contrast version of training images based on the original
contrast CT image. They observed that segmentation performance
significantly improved when additional synthetic images were used
for training. Hammami et al. use a CycleGAN as an unsupervised
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method that generates images of different modalities in a similar do-
main. These images are used to train a downstream model that can
perform multi-organ detection, which has been shown to improve
the intended task significantly [8].

2.3 Bias reduction
Mehrabi et al. describe that, like people, algorithms are vulnerable
to biases that render their decisions "unfair" [16]. Fairness is defined
as the "absence of prejudice or favoritism towards an individual
or group based on their inherent or acquired characteristics [16].
An example is given about facial recognition software in digital
cameras, which over-predict Asians as blinking. These biased pre-
dictions are said to stem from the hidden or neglected biases in
data or algorithms [16].

Research has been carried out into the reduction of bias in data
sets. Wu et al. describe that recent studies found substantial dis-
parities in the accuracy rate of classifying gender of dark-skin
females [26]. In their research, Wu et al. describe the usage of pre-
processing to balance the skin-type composition of a data set. Using
the ImageDataGenerator, familiar data augmentation techniques
like horizontal flips and re-scaling can be performed. By using the
ImageDataGenerator, they increased the percentage of dark-skin
males from 1.3 percent to 15.21 percent and dark skin females from
2.5 percent to 16.03 percent.

3 METHODOLOGY
The methodology provided in this section is followed to answer
the research questions stated in section 1. Figure 1 shows a broad
overview of the applied methodology. Both the CycleGAN pipeline
and the gender classification pipeline use the Adience benchmark
data set as their input. It is used to both train and evaluate the
CycleGAN and VGG-16 CNN architecture. Both of these pipelines
are designed as well-known machine learning systems.

Figure 1: Overview of methodology.

To further detail these parts of the methodology, this section
will first describe the data set being used. After this, the CycleGAN
pipeline will be explained, answering sub-research question one.
Next, the gender classification pipeline will be shown to incorpo-
rate this data set and the CycleGAN pipeline results. Finally, the
evaluation will be elaborated so it is clear what is measured to
answer sub-research questions two, three, and four.

3.1 Adience data set
The data set used in this classification pipeline is the Adience data
set published in 2014. This data set contains photos of faces with
binary gender labels and has been used in similar classification
pipelines [5, 14]. The data set contains faces of different angles,

with different light settings, and of different sharpness. Examples
of this can be seen in figure 2a and figure 2b.

A fundamental design principle of this data set is that it is as
accurate as possible to challenging real-world conditions. As such,
it presents all the variations in appearance, noise, pose, lighting,
and more that can be expected of images taken without careful
preparation or posing [5]. The images are collected using a face de-
tector described by Viola and Jones [25] based on images collected
from Flickr albums. All images were manually labeled for gender
using both the image themselves and any available contextual in-
formation [5].

(a) Male (b) Female

Figure 2: Sample images from Adience data set provided by [5].

From the Adience data set, 19.370 images have been used. These
images come from 2284 unique individuals. The coarse and land-
mark images provided by the data set have been used; this brings
the total up to 38.740. Of these, 16.240 images have a male gender
label. The other 22.500 have a female gender label. For further usage
in downstream tasks, the data set is split into a training/validation
and test set based on the task for which the model is trained.

The coarse and landmark images were used as Lapuschkin et al.
state that all models benefit the most from combining the coarse-
aligned and the landmark-aligned data sets for training [14]. To
demonstrate the rotation of the coarse-aligned images, figure 2a
shows a slight adjustment with black corners for the information
unavailable in the original image. Finally, the data in the Adience
data set is divided into five folds. These folds have been created to
evenly distribute the individuals into subsets to prevent over-fitting
on a fold, as multiple images of the same unique individual are in
the Adience data set.

3.2 CycleGAN pipeline
The GAN gender-to-gender data augmentation method uses the Cy-
cleGAN architecture described in [29] trained on the Adience data
set. This architecture uses a GAN to learn two mappings. The first
mapping is a generator function G that takes an image in domain
X and generates an image that is indistinguishable from domain Y.
This is done by optimizing the generator and the discriminator 𝐷𝑦 ,
which learns to label images in domain Y as real or fake based on
the generated images from generator G and images from domain Y.

The image resulting from equation G: X -> Y is then used as
input for the second mapping, which is a generator function F
that takes the image in domain Y and generates an image that is
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Figure 3: CycleGAN architecture as shown by [29]. This figure
illustrates the cyclic nature between generator X and Y, which
translates between domain X and Y.

indistinguishable from domain X. This is again through optimizing
a generator F and discriminator 𝐷𝑥 , essentially learning the inverse
of G shown as equation F: Y -> X. The result of this CycleGAN
architecture thus results in two generators and two discriminators.

For this specific application, generator G can generate a female
image based on the image of a male. Furthermore, generator F
can generate a male image based on the image of a female. The
discriminator 𝐷𝑦 determines whether the female image generated
by generator G is real or fake. Moreover, the discriminator 𝐷𝑥

determines whether the male image generated by generator F is
real or fake. Both these generators and discriminators are trained
simultaneously, as described in common GAN architectures [7].

3.2.1 Generator. The generator model used for this CycleGAN
architecture is similar to a residual neural network. The down-
sampling before the Residual Blocks is done through a layer of
2D Convolution with a vertical and horizontal stride of two. An
Instance Normalization layer and a ReLu Activation layer follow
this. After the residual blocks, the up-sampling is done through a
layer of 2D Transposed Convolution with a vertical and horizontal
stride of two. This convolutional layer is followed again by an
Instance Normalization and ReLu Activation layer.

Figure 4: Overview of ResNet Block as proposed by [10]. This
figure illustrates the two convolutions and the skip connection,
which make a residual block used in the CycleGAN generator model
architecture.

The Residual Blocks use a familiar layer configuration similar to
figure 4 starting with Reflection Padding, followed by a 2D Convo-
lution, Instance Normalization, and a ReLu Activation layer. These
layers are repeated twice, but instead of a second Activation layer,

the input to the Residual Block is added to the result provided by the
Residual Block. The complete overview of the generator is shown
in table 1.

Layer (type) Output Shape Parameter #

Input Layer [224, 224, 3] 0
2D reflection padding [230, 230, 3] 0

2D Convolution [224, 224, 64] 9.408
Instance normalization [224, 224, 64] 128

ReLu activation [224, 224, 64] 0
ResNet Block (9x) [56, 56, 256] 12.400.640

2D transpose convolution [112, 112, 12] 294.912
Instance normalization [112, 112, 12] 256

ReLu activation [112, 112, 12] 0
2D transpose convolution [224, 224, 64] 73.728
Instance normalization [224, 224, 64] 128

ReLu activation [224, 224, 64] 0
2D reflection padding [230, 230, 64] 0

2D Convolution [224, 224, 3] 9.411
Tanh Activation [224, 224, 3] 0

Table 1: Layers of generator in CycleGAN architecture used for gen-
erating images. Architecture adopted from [29], using the example
provided by Keras at [18]. The input image size for all components
of the CycleGAN architecture was reduced to decrease the memory
usage required to train it.

3.2.2 Discriminator. The discriminator model used for this Cycle-
GAN architecture uses a layer configuration shown in table 2. The
down-sampling is again done through a layer of 2D Convolution
with a vertical and horizontal stride of two. An Instance Normaliza-
tion layer and a Leaky ReLu Activation layer follow this. The last
down-sample does not use a stride of two but a stride of one. A 2D
Convolution layer finally follows this.

Layer (type) Output Shape Parameter #

Input Layer [224, 224, 3] 0
2D Convolution [112, 112, 64] 3.316

Leaky ReLu activation [112, 112, 64] 0
2D Convolution [56, 56, 128] 131.072

Instance normalization [56, 56, 128] 256
Leaky ReLu activation [56, 56, 128] 0

2D Convolution [28, 28, 256] 524.288
Instance normalization [28, 28, 256] 512
Leaky ReLu activation [28, 28, 256] 0

2D Convolution [28, 28, 512] 2.097.162
Instance normalization [28, 28, 512] 1024
Leaky ReLu activation [28, 28, 512] 0

2D convolution [28, 28, 1] 8.193
Table 2: Layers of discriminator in CycleGAN architecture used
for evaluating images. Architecture adopted from [29], using the
example provided by Keras at [18].
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Both the architecture of the generator and the architecture of the
discriminator could potentially be improved upon by investigating
optimizations to the layers described in table 1 and table 2. This
optimization would, however, introduce the need to compare gen-
erated results past the current qualitative approach. The objective
of this research is not to find an improved CycleGAN architecture.
The CycleGAN is used to generate domain translations, so the im-
pact of using these in the training data set can be examined. For
this reason, an improved CycleGAN architecture is not considered
further.

3.2.3 Loss function. The total loss of this CycleGAN architecture
shown in figure 3 comprises the loss function for both the afore-
mentioned GANs using domain X and Y as input; these networks
adopt the architecture described by [11]. Only optimizing this loss
function still has the potential to create realistic but unrelated im-
ages. This behavior happens because the loss of the discriminators
optimizes how well the generated images fits in the other domain,
but this does not say anything about how related the image is to
the original. This behavior requires a third component to the loss
function penalizing a difference between the input x and the output
of F(G(x)) and vice versa. This loss function still allows the gener-
ators to change the tint of input images when there is no need to
[29]. This is why a fourth component is added to the loss function,
which is the identity mapping loss.

L(𝐺, 𝐹, 𝐷𝑥, 𝐷𝑦) = L𝐺𝐴𝑁 (𝐺,𝐷𝑦,𝑋,𝑌 )
+L𝐺𝐴𝑁 (𝐹, 𝐷𝑥,𝑌, 𝑋 ) + 𝜆L𝐶𝑌𝐶 (𝐺, 𝐹 )
+𝜆L𝐶𝑌𝐶 (𝐹,𝐺) + L𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (𝐺, 𝐹 )

(1)

Calculating the loss of the generator is done by calculating the
mean square error between the continuous evaluation of the dis-
criminator and a vector of the same shape containing an evaluation
for which all of the generated images are classified as being real,
essentially evaluating how real the discriminator perceived the
generated image to be and converging towards a real prediction for
every input.

Calculating the discriminator’s loss is also done by first calculat-
ing the mean square error of evaluating a real image and a vector of
the same shape containing an evaluation for which all real images
are classified as real. Secondly, the mean square error is calculated
for evaluating a fake image and a vector of the same shape contain-
ing an evaluation for which the fake images are classified as fake.
This loss function evaluates how well the discriminator can identify
the fake image as fake and how well the discriminator can identify
the real image as real, converging towards all correct predictions.
The cycle loss is calculated using the mean square error between
the real image and the corresponding generated image in the same
domain, converging toward related images. Finally, the identity loss
is calculated using the mean absolute error between the original
image and the corresponding generated image in the same domain,
converging towards similar tints in the generated images.

Using this loss function, the two generators and two discrimi-
nators in the CycleGAN architecture are trained by performing a
forward pass and propagating the calculated gradient back through
the trainable variables. The optimization is done through an Adam
optimizer, and the model is initialized using a random normal distri-
bution based on the implementation described by [29]. 90% of the

images are used as training data for male and female domains. The
remaining 10% will remain available for quantitative inspection.
The model is trained on the training data for 150 epochs. After
training this architecture using the three-part loss function shown
in equation 1 for optimization, it can be used at inference time to
generate a translated image for a corresponding source image.

3.2.4 Pre-processing. Before training the CycleGAN architecture,
the input images go through a pre-processing stage. The default
implementation of the CycleGAN architecture provided by Zhu
et al. performs both a random crop and random flip, followed by
normalizing the images [29]. In the default implementation, the
random crop uses a resize based on the nearest neighbor resize
method. The resize method was changed to the bi-linear because
the nearest neighbor resize method would overemphasize the black

Figure 5: A detailed overview of data sets, models, decisions, and
actions that are part of the methodology. Based on the configura-
tion chosen by making the decisions shown as blue circles, results
are reported based on evaluating the gender classification model’s
performance on the test data set.
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corners in the coarse images, resulting in an increasingly dark
image generated by the CycleGAN generators.

3.2.5 Learning rate. One important hyperparameter for training
neural networks using stochastic gradient descent is the learning
rate [7]. Figure 5 shows a qualitative evaluation step that could lead
to the adjustment of hyper-parameters. This qualitative evaluation
is done through a subjective investigation of the generated images
after each training epoch. After 100 epochs of training, the learning
rate of both discriminators was manually adjusted from 2e-4 to
5e-4. This adjustment is made because the discriminators seemed to
underperform in classifying images as fake in a specific domain. The
tolerant discriminator led to generators that would not consistently
provide amapping from gender to gender but instead learned tomap
to the same gender as this obtains the highest cycle consistency.
These trained generators, however, do not lead to the intended
gender mapping, which is why the discriminators’ learning rate
was increased while optimizing the GANs.

3.3 Gender classification pipeline
To investigate the impact of the pre-processing using the CycleGAN
model, a gender classification pipeline is created for four configu-
rations. The first serves as a benchmark with pre-processing as it
was done in [14]. The second compares the benchmark with the
CycleGAN pre-processing in the training stage. The last two serve
as a comparison when there is an imbalance in the training data;
this essentially means the same two configurations are run for a
different data set.

The gender classification of facial images is done using a VGG-16
Convolutional Neural Network (CNN) architecture described by
Simonyan and Zisserman [23]. This architecture is chosen because
[14] provides a performance benchmark, which can be used to
evaluate how well the chosen methodology performs compared to
existing literature. In addition, the architecture suits the task of gen-
der classification while having a straightforward implementation,
confining the complexity of the methodology. The VGG-16 model
is initialized using the ImageNet pre-trained weights. Because the
model has to perform binary classification of males and females,
the fully connected top layers of the VGG-16 model are removed,
and the remaining weights are frozen so they will not change while
training the model. To this base of the VGG-16 model, additional
layers are added to provide the single result in the final layer. Table
4 in appendix A shows the complete model architecture.

To train the VGG-16 model, a train and test split is done for the
Adience data set. This split is done for all folds, so the unique indi-
viduals are distributed evenly. The training data is pre-processed
by performing a random crop, a random flip, and normalization. A
potential data augmenting step replaced the pre-processing stage
depending on the pipeline’s configuration. The generators from
the CycleGAN are used to randomly provide a translated image,
for which the label is changed accordingly. Multiple epochs are
performed while training the model. This pre-processing approach
provides the original and the translated version of the source image
to the model for training.

The training data is split into folds and used for training models
validated on a holdout fold. Performing training iterations for all
holdout folds results in learning curves indicating at what epoch

the training should stop to prevent over-fitting. The training of
the VGG-16 CNN is done using the objective function of increased
performance on the gender classification task using well-known
optimization methods described in [7]. After determining the op-
timal amount of epochs obtained through k-fold cross-validation,
the final VGG-16 model is trained on all training folds and used to
evaluate the test data.

3.4 Evaluation
The test data is classified after training the VGG-16 model for dif-
ferent pre-processing configurations using the training and val-
idation data. These classifications are evaluated to compare the
performance and the bias after using the different pre-processing
techniques. To measure the performance difference, the model per-
formance is measured by its accuracy calculated as the fraction of
correct decisions. In addition, the F-score is calculated to give an
indication of the precision and recall performance.

The predictions on the test set are also used to evaluate the bias of
the models resulting from different pre-processing configurations.
Evaluating the bias is done by calculating the demographic parity
and the equal odds. The demographic paritymeasures the balance of
the positive (and negative) predictions by evaluating the predictive
equality and equality of opportunity between groups [4]. The equal
odds measures the balance of classification errors like false positive
and false negatives rates between groups [4].

To summarize the methodology provided in this section, figure 5
shows a graphical overview of the data sets, models, decisions, and
actions taken to provide the results used to answer the research
questions provided in section 1.

Figure 6: Source image and corresponding generated image pro-
vided by the CycleGAN generators. The first row shows source
males, and the second shows the corresponding generated female
images. The third row shows source females, and the fourth shows
the corresponding generated male images.
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Figure 7: The loss function for generators and discriminators in
CycleGAN architecture. Generators G and F show a descending
loss function with a homogeneous number of errors leading to a
comparable loss function. Both discriminators 𝐷𝑥 and 𝐷𝑦 show
no initial descending loss but similar behavior for the number of
errors calculated by the loss function. This could be due to the
cyclical loss function where one of the two generators’ massively
increasing performance has a less significant impact because it does
not increase the cyclical loss as much as two improving generators.

4 RESULTS
To investigate the impact of using a CycleGAN architecture as a
data-augmenting pre-processing method, the sub-research ques-
tions stated in section 1 is addressed. First, the training of the
CycleGAN and its resulting generators are discussed. After this,
the different configurations of the gender classification pipeline are
evaluated so the bias and performance can be reported.

4.1 CycleGAN
The first sub-research question enquires how a GAN can perform
gender-to-gender generation. Section 3 explains how a combination
of two GANs can be used with a cyclical loss function to train two
generators that can perform unpaired translations of images. For
this research’s specific purpose, the two generators were trained
for male and female images. To demonstrate the CycleGAN’s effec-
tiveness, several domain translations are shown in figure 6.

The loss values for the networks can be inspected to get a more
detailed insight into the training of both the generators and dis-
criminators. In figure 7, the development of the loss functions is
shown. Here it becomes clear that the two pairs of generator and
discriminator show similar internal adversarial behavior, indicating
that the male-to-female and female-to-male GANs seem to learn
at a similar pace. In addition, the GANs seem to avert common
limitations like model collapse and non-convergence [21].

Mode collapse happens when generators learn to map different
inputs to the same output. This, however, does not seem to happen
for the GANs trained in this research. This is observed by inspect-
ing generated images and subjectively evaluating that the different
outputs do not show the same generated face. In addition, both gen-
erators show slight increases in their loss while the discriminators

show slight decreases in loss, especially around epochs 100 and
135. The generators and discriminators, however, recover from this
failure mode. The result is that none of the loss functions seems to
converge towards zero, indicating that the networks keep learning
on each new epoch and do not suffer from non-convergence.

This behavior could be due to the cyclical loss function discussed
in section 3. Because both the GANs are optimized to have cyclical
behavior for an input image, the generators are incentivized not to
diverge to similar or low-quality outputs. Because of this, the dis-
criminators also keep having relevant predictions, making both the
loss functions stable. Because of the equilibrium in generator and
discriminator loss, the generators are expected to keep improving,
generating fake domain mappings.

An observation made by empirically inspecting the results of the
CycleGAN generators is that images of infants do not translate as
noticeably as images of other age categories. This behavior is shown
in figure 8. This result is notable as infants are not underrepresented
in the data, as shown in figure 8; the amount of labels below ten
years old is almost the largest group in the Adience data set. The
creators of the Adience data set report that ages between zero
and two are the second largest group in the data set, behind ages
between 25 and 32 [5]. Under-representation in the data is thus not
an obvious explanation. An alternative explanation of this result
could be that images in both the male and female domains are
similar for this age range. Thus, the generators do not learn as
strong a mapping between the domains because the discriminators
do not judge them fake as often. Possible solutions for this limitation
are discussed in section 5.

4.2 Gender classification
A baseline must be established to answer the second sub-research
question stated in section 1. This is done by evaluating the bal-
anced and imbalanced data configurations. Only the prevailing
pre-processing techniques described in section 3 are used for this
configuration. The training data was split into a train and validation
set to determine around what epoch to stop the training process

(a) (b)

Figure 8: (a) shows an overview of the age labels provided in the
Adience data set. (b) shows an example of a female source image
for an infant on the top row, below the corresponding generated
male image. Upon quantitative inspection, it does not seem that
the generator applies gender-altering mapping.
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Figure 9: Accuracy of VGG-16 model at gender classification on
validation set. The background of this plot shows the validation and
training accuracy per fold. This allows us to observe the outlier data
points. The average validation and training accuracy is shown in
the foreground. The validation accuracy seems to stagnate around
epoch 60 without showing signs of over-fitting in the training
accuracy.

and use the model. The average validation accuracy is shown in
figure 9, which increases meaningfully until around epoch 60. The
average is calculated from the accuracy measured for each fold.
These individual results are shown in the background of figure 9.

Based on the information in figure 9, the decision is made to train
the final VGG-16 gender classification models for around 60 epochs.
This allows it to reach the expected accuracy without potentially
over-fitting the test data. The results of this training process and
the accuracy as measured on the test data are shown in figure 10.
As the model seems stagnated with little fluctuations around epoch
60 but does not show specific over-fitting just before or after 60
epochs, the model with the highest accuracy between epoch 55 and
epoch 65 is chosen. Results for this are shown in figure 10.

To evaluate fairness, demographic parity is used to measure the
probability of a particular prediction depending on sensitive group
membership, as reported in table 3. The results are reported as the
difference between the largest and the lowest group-level selection
rate across all values of the sensitive feature. The demographic
parity difference of zero means all groups have the same selection
rate. In addition, an equalized odds difference of zero means that
all groups have the same true positive, true negative, false positive,
and false negative rate 1.

4.2.1 Common pre-processing. To evaluate the baseline for both
the balanced and unbalanced data set configuration, the models
are trained up until epoch 55 for the former configuration and
epoch 63 for the latter configuration. As the first configuration
is for a balanced data set, and the second configuration is for an
unbalanced data set that is not highly unbalanced, the accuracy is
measured as the fraction of correct decisions. These accuracy results
are provided in table 3 for both configurations. Both results are
similar to the reference paper mentioned in section 3. However, it
1https://fairlearn.org/

is important to recognize that this reference paper reported results
for an unbalanced data set.

The demographic parity difference and equalized odds difference
are also provided in table 3. For both the balanced and unbalanced
data set, values above 0.8 are observed, which is quite far from 0.
This indicates that demographic parity and equalized odds have
not been achieved.

4.2.2 CycleGAN pre-processing. To compare the balanced and un-
balanced data set configuration with CycleGAN pre-processing

(a)

(b)

Figure 10: Information about the training process of the VGG-
16 gender classification model on the test data set. (a) shows the
model’s accuracy for the balanced and unbalanced training data
set configuration. Both accuracy lines show a similar increasing
curve to the results recorded on the validation set shown in figure
9. (b) shows the model’s accuracy for which both the balanced and
unbalanced training images were augmented using a CycleGAN.
Here the accuracy in the initial phase of the training seems to be
higher. However, the accuracy is not similar to the model for which
no augmentation has been applied to the training data.
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applied, the models are trained until epoch 60 for the balanced con-
figuration and epoch 58 for the unbalanced configuration. This al-
lows for the evaluation necessary to answer sub-research questions
three and four. The accuracy is again reported as the fraction of cor-
rect decisions in table 3. Compared to the benchmark, the VGG-16
gender classification models do not seem to have improved perfor-
mance when trained on data augmented with a gender-to-gender
transformation. Instead, a decrease in performance is observed.

The demographic parity and equalized odds differences are again
calculated and provided in table 3. A decrease is observed for the
demographic parity difference, especially for the unbalanced data
set configuration. For the equalized odds difference, no decrease
can be observed for the balanced data set, but a decrease can be
observed for the imbalanced data set. This indicates that the pre-
processing using a gender-to-gender transformation does seem to
positively impact the demographic parity and the equalized odds,
mainly when the data is imbalanced. It is, however, important to
recognize that the demographic parity difference and equalized odds
difference remain far from zero. This indicates that demographic
parity and equalized odds have again not been achieved.

Overall, table 3 shows that pre-processing using GANs as a
gender-to-gender data augmentation step does influence the ac-
curacy and bias of a VGG-16 Convolutional Neural Network per-
forming a gender classification task. The accuracy decreases by
around 3.5 percent for the balanced and imbalanced data set con-
figuration. The bias, however, is measured through demographic
parity and equalized odds. The demographic parity decreases by
9 percent for the imbalanced training data set configuration, and
5.7 percent for the balanced training data set configuration. The
equalized odds only noticeably change for the unbalanced training
data set configuration and shows a decrease of 6.1 percent. Though
these results show an influence on the accuracy and bias, it does not
show that bias has been removed. A result closer to zero for both
the demographic parity and equalized odds is expected to evaluate
the resulting model as fair.

5 DISCUSSION
Comparing the benchmark provided by answering sub-research
question two, to the measurements provided by answering sub-
research questions three and four, it is observed that an impact can
be measured but does not lead to a significantly different evaluation
of the model’s fairness. This indicates that bias remains measurable
in the output of the model. This means that the methodology de-
scribed in section 3 does not fully achieve the hypothesized impact
described in section 1. This section goes deeper into the discussion
of these results.

A limitation of the current approach to training the gender-to-
gender mapping with the CycleGAN architecture is that images of
infants do not translate. This could be due to infants’ less distin-
guishable characteristics, making it harder for the discriminator to
label a generated infant as fake. Future research into the training of
a CycleGAN for generating gender-to-gender mapping could miti-
gate this by, for instance, having different augmentation techniques
for different age ranges. Using this improved CycleGAN model to
augment data could have positive implications for the downstream

Male Female GAN Acc. F-score Parity Odds

13.024 13.024 No 0.911 0.899 0.815 0.890
13.024 17.966 No 0.915 0.892 0.828 0.905
13.024 13.024 Yes 0.877 0.847 0.758 0.892
13.024 17.966 Yes 0.873 0.857 0.738 0.844

Table 3: Different configurations of the gender classification
pipeline. It shows the configuration of training data used by show-
ing the number of male and female images. When the same amount
of images of both has been used, this means the data configuration
was balanced. In addition, it shows the pre-processing configura-
tion, accuracy, F-score, demographic parity, and equalized odds.
The first and second rows show the baseline where no CycleGAN
pre-processing and classification is performed for a balanced and im-
balanced data set, respectively. The third and fourth rows show the
performance of the classification when CycleGAN pre-processing
is performed. The accuracy and F-score is shown to decrease after
applying the CycleGAN pre-processing; however, the demographic
parity decreases for both data configurations, and the equalized
odds decreases for the imbalanced data configuration.

task of gender classification. These possible implications are illus-
trated by an example of the infant shown in figure 8b. During the
pre-processing, the image will be translated without observable
change in the gender of the infant in the image. The gender label,
however, will be changed, creating a wrongly labeled training ex-
ample. This could potentially negatively impact the accuracy of
the gender classification model downstream and might explain the
decrease in accuracy reported in table 3.

Another limitation could be the generalizability of the current
methodology provided in section 3. The only input to the currently
trained CycleGAN is the Adience data set. Though not all avail-
able data has been used for the training of the CycleGAN, similar
data was used for training both the CycleGAN and the VGG-16
gender classification model. However, It is unclear how well the
CycleGAN weights translate to a pre-processing step for a different
data set, like the IMDB-WIKI data set. Future research into the
generalizability and performance of the CycleGAN architecture
for gender-to-gender mapping could, for instance, entail introduc-
ing multiple data sets as training data. In addition, no attention
was spent on the underlying model architectures of the genera-
tors and discriminators of the CycleGAN architecture. These could
potentially be optimized to both prevent over-fitting and increase
performance. Measuring this performance is also not explored in
this research, though it might be interesting to improve training
capabilities. This, in turn, unlocks the potential to get insights into
the behavior of the CycleGAN concerning potential over-fitting.

Potential future research could investigate these limitations. In
addition, different approaches to generating images could be ex-
plored. A different type of model used for image generation is the
variational autoencoder, which could replace the CycleGAN as the
data-augmenting model. Mescheder et al., however, state that GANs
generally yield visually sharper results when applied to learning a
representation of natural images [17]. However, it is unclear what
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the impact of losing the sharpness is, thus making this an exciting
area of further investigation.

An ethical concern is that this pre-processing method should
be applied knowledgeably depending on the domain and the type
of predictions to make. A scenario that could occur is one where
characteristics like gender can benefit the model’s predictions. In
this scenario, it is essential to retain this signal. Diversifying the
data could have a negative impact and thus lead to negative real-
world implications. An example would be detecting certain diseases
that only occur for one of the two genders. Removing the distinction
could allow for wrong predictions. When these wrong predictions
happen more often for the group for which it is the goal to remove
bias, the bias is only reinforced.

6 CONCLUSION
This research examines the impact of generative adversarial net-
works (GANs) as a gender-to-gender data pre-processing step on
bias and accuracy in a gender classification model. A cyclic gener-
ative adversarial network (CycleGAN) is trained on the Adience
dataset to augment the data by performing a gender translation.
Considering the limitations discussed in section 5 and the answers
to the sub-research questions provided in section 4, it allows for
the answer to the research question provided in section 1. The
results show decreases in demographic parity and equalized odds,
indicating increases in fairness. These changes in fairness, however,
are not significantly consequential to change our evaluation of the
fairness of the VGG-16 gender classification model and thus do not
allow this research to conclude that it removes bias in the training
data. This indicates that the proposed methodology is effective but
insufficient for complete bias removal.
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Appendix A VGG-16 MODEL ARCHITECTURE

Layer (type) Output Shape Parameter #

Input Layer [224, 224, 3] 0
VGG-16 base model [7, 7, 512] 14.714.688

Dropout [7, 7, 512] 0
2D Convolution [7, 7, 512] 2.359.808

Batch normalization [7, 7, 512] 2.048
Dropout [7, 7, 512] 0

2D Convolution [7, 7, 128] 589.952
Batch normalization [7, 7, 128] 512

Dropout [7, 7, 128] 0
2D convolution [7, 7, 384] 442.752

Batch normalization [7, 7, 384] 1.536
Dropout [7, 7, 384] 0

2D Convolution [7, 7, 384] 1.327.488
Batch normalization [7, 7, 384] 1.536

Dropout [7, 7, 384] 0
2D Convolution [7, 7, 500] 1.728.500

Batch normalization [7, 7, 500] 2.000
2D max pooling [4, 4, 500] 0

Flatten [8.000] 0
Dense [2.048] 16.386.048
Dropout [2.048] 0
Dense [2.048] 4.196.352
Dropout [2.048] 0
Dense [2.048] 4.196.352
Dropout [2.048] 0

Sigmoid activation [1] 2.049
Table 4: Layers of VGG-16 model architecture adopting the VGG-16
base model from [23], using pre-trained weights.
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