
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Source Code Metrics for Combined
Functional and Object-Oriented

Programming in Scala

Sven Konings
Master Thesis

Nov. 2020

Supervisors:
dr. A. Fehnker

dr. L. Ferreira Pires
ir. J.J. Kester (Info Support)

Formal Methods and Tools
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Source code metrics are used to measure and evaluate the code quality of software projects. Met-
rics are available for both Object-Oriented Programming (OOP) and Functional Programming
(FP). However, there is little research on source code metrics for the combination of OOP and
FP. Furthermore, existing OOP and FP metrics are not always applicable. For example, the
usage of mutable class variables (OOP) in lambda functions (FP) is a combination that does not
occur in either paradigm on their own. Existing OOP and FP metrics are therefore unsuitable
to give an indication of quality regarding these combined constructs.

Scala is a programming language which features an extensive combination of OOP and FP con-
struct. The goal of this thesis is to research metrics for Scala which can detect potential faults
when combining OOP and FP. We have implemented a framework for defining and analysing
Scala metrics. Using this framework we have measured whether code was written using mostly
OOP- or FP-style constructs and analysed whether this affected the occurrence of potential
faults. Next, we implemented a baseline model of existing OOP and FP metrics. Candidate
metrics were added to this baseline model to verify whether they improve the fault detection
performance.

In the analysed projects, there was a higher percentage of faults when mixing OOP- and FP-style
code. Furthermore, most OOP metrics perform well on FP-style Scala code. The baseline model
was often able to detect when code was wrong. Therefore, the candidate metrics did not signif-
icantly improve the fault detection performance of the baseline model. However, the candidate
metrics did help to indicate why code contained faults. Constructs were found for which over
half of the objects using those constructs contained faults.

1

Acknowledgements

First of all, I would like to thank my supervisors: Jan-Jelle Kester (Info Support), Ansgar Fehnker
(University of Twente) and Luís Ferreira Pires (University of Twente). Their questions, feedback
and insights have helped greatly writing this thesis.

Furthermore, I would like to thank Info Support for providing the starting points and host-
ing this thesis. I would like to thank Rinse van Hees (Info Support) for providing interesting
information and putting me into contact with Erik Landkroon, whom I would like to thank
for taking the time to answer my questions about his work. I would like to thank Lodewijk
Bergmans from the Software Improvement Group for taking the time to discuss the definitions
of code quality and what the Software Improvement Group does to quantify it.

Finally, I would like to thank my friends and family for their support and always providing
a listening ear.

- Sven

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Problem statement . 6
1.3 Scope . 6
1.4 Research questions . 7
1.5 Approach . 7
1.6 Contributions . 8
1.7 Outline . 9

2 Background 10
2.1 Multi-Paradigm Programming . 10
2.2 Scala constructs . 11
2.3 Code quality . 22

3 Validation methodology 25
3.1 Briand’s validation methodology . 25
3.2 Landkroon’s validation methodology . 26
3.3 Relating measurements to fault-proneness . 26
3.4 Prediction performance evaluation . 27

4 Implementation 29
4.1 Data collection . 29
4.2 Framework design . 31
4.3 Fault analysis . 33
4.4 Code analysis . 33
4.5 Validator workflow . 33
4.6 Result analysis . 34
4.7 Discussion . 34

5 Evaluating construct usage 36
5.1 Construct measurement definitions . 36
5.2 Paradigm score definitions . 38
5.3 Results . 40
5.4 Conclusion . 45

3

6 Baseline model 47
6.1 Baseline model definition . 47
6.2 Baseline performance . 50
6.3 Metric performance by paradigm . 52
6.4 Conclusion . 56

7 Metrics tailored to OOP and FP 57
7.1 Candidate metrics . 57
7.2 Results . 60
7.3 Conclusion . 64

8 Related work 65

9 Conclusion 67
9.1 Findings . 67
9.2 Discussion . 68
9.3 Future work . 69

A Fractional Paradigm Score plots 75

B Construct measurement results 80

C Baseline model average MCC per paradigm 85

D Multivariate baseline regression for objects with metric results 88

4

Chapter 1

Introduction

This chapter sets the stage for this Master’s thesis. Section 1.1 explains the motivation for
researching source code metrics aimed at the combination of object-oriented and functional pro-
gramming. Section 1.2 explains the limitations of the currently available tooling and metrics.
The scope of this thesis is defined in Section 1.3. Section 1.4 presents the research questions
based on the introduced problems. Section 1.5 described the approach used to answer the re-
search questions. Section 1.6 presents the contributions made by this thesis. Finally, the outline
of this thesis is presented in Section 1.7.

1.1 Motivation
An important aspect of software projects is code quality, especially maintainability and reliabil-
ity [25]. Poor code quality can lead to unreliable projects that are difficult to maintain. One way
to increase maintainability and reliability is by using source code metrics. Source code metrics
measure attributes of the code and can be used to locate code that is potentially unreliable or
difficult to maintain. Metrics can be used during the development process to identify problematic
code before it reaches production. Furthermore, metrics can provide pointers as to why code is
unreliable. If we know certain constructs almost always cause issues we can develop and add
patterns to tooling to prevent the use of these constructs.

Many source code metrics exist for Object-Oriented Programming (OOP) languages like Java
[3, 15, 51] and C# [9, 19, 51]. Metrics have also been defined for Functional Programming (FP)
languages like Haskell [37, 38]. However, there is little research on source code metrics for the
combination of OOP and FP [30]. Furthermore, existing OOP and FP metrics are not sufficient
when two paradigms are used in combination [53].

The combination of OOP and FP is becoming more and more common. Popular OOP lan-
guages, like Java and C#, have incorporated concepts from FP languages, like lambdas and
higher-order functions [53]. In addition, Multi-paradigm Programming (MP) languages, like
Scala and Kotlin, feature an extensive combination of OOP and FP constructs. More and more
software projects are using these MP languages [8]. Therefore, source code metrics and tooling
aimed at the combination of OOP and FP could be a great aid to improve the reliability and
maintainability of these projects.

5

1.2 Problem statement
The combination of OOP and FP allows for powerful new (combinations of) programming con-
structs. However, these new combination can also cause new problems which existing OOP and
FP metrics do not take into account. For example, the usage of mutable class variables (OOP)
in lambda functions (FP) is a combination that does not occur in either paradigm on their own.
With regards to these combined constructs, existing OOP and FP metrics are unsuitable to give
an indication of quality.

The combination of paradigms also leads to new pitfalls. For example, FP code often assumes
that lambda functions have no side-effects. However, this is not guaranteed in MP languages.
An advantage of having functions without side-effects, also called pure functions, is that they
can be lazily evaluated and operations using them can easily be parallelized. In MP languages
functions are not guaranteed to be pure. An example where this causes issues is when using
parallel collections. A small Scala program that demonstrates this can be found in Listing 1.1.
In this program both calls should produce the same output. However, because the lambda has
side-effects it cannot safely be parallelized and introduces concurrency issues when used in com-
bination with parallel collections. These new pitfalls are not detected by traditional metrics
and tooling. To increase the reliability and maintainability, common pitfalls should be detected
before code enters production. Therefore, new metrics and patterns that can be used to warn
when code is likely to contain these faults are needed.

1 var counter = 0
2 val list = (1 to 5).toList
3 val parallelList = list.par
4

5 println(list.map { i =>
6 counter += 1
7 i + counter
8 }) // Prints [2, 4, 6, 8, 10]
9

10 counter = 0
11

12 println(parallelList.map { i =>
13 counter += 1
14 i + counter
15 }) // Prints [3, 7, 4, 7, 9]

Listing 1.1: Scala parallel collection impure lambda example

1.3 Scope
There are many different programming languages featuring a combination of OOP and FP. Each
of these languages has a unique combination of constructs. For this thesis, we have decided to
focus on a single language, namely Scala. Scala has been designed as a combination of OOP
and FP from the start and contains a very extensive mix of OOP and FP constructs. Scala
exists since 2004 and is more mature than most other languages that have been designed as a
combination of OOP and FP from the start. Scala has a good adoption rate and is ranked 16th

most popular language as of March 2020 according to the PYPL index [8]. These properties
ensure there is enough data available to analyse. Existing metrics and tooling, like SonarQube
[45], have support for Scala. However, this support focuses on the OOP side of Scala and does

6

not cover faults that occur when mixing OOP and FP constructs [29].

1.4 Research questions
The goal of this thesis is to define metrics that can indicate potential faults when mixing OOP
and FP (like existing metrics for OOP and FP). These metrics can be used to increase the code
quality of Scala projects. A common method to detect faults is by predicting the fault-proneness
of a piece of code [13]. The fault-proneness is the likelihood a piece of software contains faults.
This leads to the main research question:

RQ To what extent can fault-proneness prediction in Scala be improved using metrics tailored
to the combination of OOP and FP?

As a starting point for defining metrics, the usage of OOP and FP constructs has been measured.
The fault-proneness prediction performance of these measurements has been analysed to identify
whether some constructs are more fault-prone than others. Constructs that are significantly
more fault-prone can be used as a starting point for defining metrics. This leads to the first
subquestion:

RQ1 Which OOP or FP constructs in Scala are significantly more fault-prone than others?

The mix of OOP and FP within a piece of code has also been measured using a paradigm score.
The paradigm scores attribute points to the usage of OOP and FP constructs. The resulting
score is based on the ratio of OOP points to FP points. The full definition of the paradigm score
can be found in Section 5.2. The fault-proneness prediction performance of the paradigm score
has been measured to identify whether a mix of constructs is more fault-prone. This leads to the
second subquestion:

RQ2 How well does the paradigm score perform as a predictor for fault-proneness?

Existing OOP and FP metrics can be used to predict the fault-proneness of Scala code [30].
One way to potentially improve the fault-proneness prediction is to select which metrics are used
based on the mix of OOP and FP within a class. Before this can be done it is necessary to know
how these metrics are affected by the mix of OOP and FP. This leads to the third subquestion:

RQ3 To what extent is the fault-proneness prediction ability of existing OOP and FP metrics
affected by the mix of OOP and FP within a class or method?

To validate the new metrics a baseline model has been used. The baseline model consists of
a set of commonly used OOP and FP metrics. The full definition of the baseline model can
be found in Section 6.1. New metrics are considered validated when they significantly improve
the fault-proneness prediction performance of the baseline model. This leads us to the final
subquestion:

RQ4 To what extent can the fault-proneness prediction performance of the baseline model be
improved by adding metrics tailored to the combination of OOP and FP?

1.5 Approach
The first step within this thesis was to select Scala projects and gather data that can be used
for analysis. For the fault-proneness analysis it is important to select projects that keep track of

7

faults which occurred in the past and which parts of the code were changed to fix them.

Next, a framework was built for the analysis. First, the framework gathers the fault data and
keeps track of which faults are related to which parts of the code. Next, the metrics of the code
are measured. The fault data are combined with the metric measurements so that it is known
how many faults are related to each measurement. Finally, the metric measurements are used to
predict faults by using logistic regression and the resulting prediction performance is measured.
The framework measures the prediction performance of individual metrics and the prediction
performance of all metrics combined.

The next step was to answer the first two subquestions, to find out which constructs are promising
predictors for defining new metrics and how well the paradigm score performs as a predictor for
fault-proneness. Construct measurements were defined based on the analysis of Scala constructs
in Section 2.2. Based on these construct measurements several paradigm score alternatives were
defined. The fault-proneness prediction performance of the constructs and the paradigm score
was measured to answer RQ1 and RQ2.

Next, the baseline model was defined by selecting general, OOP and FP metrics based on ex-
isting literature. The prediction performance of the baseline model was measured based on the
combined performance of all metrics. To determine to what extent OOP and FP metrics are
affected by the mix of OOP and FP, the code was split up into four categories based on the
paradigm score: OOP, FP, Mix of OOP and FP, and neutral. To answer RQ3 the prediction
performance of the individual metrics of the baseline model was measured on each category.

Finally, metrics tailored to the mix of OOP and FP were validated. These metrics were de-
fined based on three main sources:

1. The metrics for the functional side of C# by Zuilhof [53].

2. The OOP or FP constructs that are significantly more fault-prone.

3. The existing OOP and FP metrics that are significantly affected by the mix of OOP and
FP.

To select promising metrics, the prediction performance of the individual metrics was measured.
The metrics that performed well were added to the baseline model to validate whether they
significantly improve the combined prediction performance. This answers RQ4 and the main
research question.

1.6 Contributions
This section discusses the intended contributions of this thesis. The contributions are in fourfold.

Insights in fault-proneness when mixing OOP and FP First of all, this thesis provides
insights into the fault-proneness of code when mixing OOP and FP. It provides an overview
of constructs and their fault-proneness. Additionally, this thesis provides insights into how the
paradigm score is related to fault-proneness. Finally, this thesis provides insights into how
existing OOP and FP metrics are affected by the mix of OOP and FP.

8

Metrics tailored to the combination of OOP and FP This thesis provides metric defi-
nitions aimed at detecting problematic code when mixing OOP and FP have been defined and
validated. The performance of each of the metrics has been measured. Furthermore, this the-
sis provides an overview of how the occurrences of constructs measured by the defined metrics
correlates with the fault-proneness.

Metric analysis dataset All data used and produced in this thesis have been published. This
includes the data needed to reproduce the results, like the data of the analysed projects and a
cached version of the gathered issue data. The results produced by the metric measurements and
the results produced by the fault-proneness predictions have also been published. All of these
results can be found at https://github.com/svenkonings/ScalaMetrics/tree/master/data.

Analysis framework Finally, an analysis framework for Scala that can be used to validate
new metrics or to reproduce the results presented in this thesis has been created. This framework
is a further development of the work by Landkroon [30]. The analysis framework consists of four
main components:

GitClient - Gathering Git project data and GitHub issue data.
CodeAnalysis - Developing and running metrics.
Validator - Gathering metric results combined with fault information across different versions.
ResultAnalysis - Measuring the prediction performance of metrics using logistic regression.

The framework can be found at https://github.com/svenkonings/ScalaMetrics.

1.7 Outline
This thesis is structured as follows. Chapter 2 gives the necessary background info on pro-
gramming paradigms, Scala and code quality. Chapter 3 discusses the validation methodology
that was used to evaluate metrics. The implementation architecture is discussed in Chapter 4.
In Chapter 5 the constructs within Scala and the paradigm score are measured. Their fault-
proneness prediction performance is evaluated to answer RQ1 and RQ2. Chapter 6 presents
the baseline prediction model and discusses how existing metrics are affected by the mix of OOP
and FP to answer RQ3. Chapter 7 defines and validates metrics tailored to the combination of
OOP and FP to answer RQ4. In Chapter 8 related work is discussed. Finally, the concluding
remarks and future work are presented in Chapter 9.

9

https://github.com/svenkonings/ScalaMetrics/tree/master/data
https://github.com/svenkonings/ScalaMetrics

Chapter 2

Background
This chapter gives the background information necessary to understand this thesis. Section 2.1
gives the background on OOP, FP, and the definition of multi-paradigm used in this thesis.
Section 2.2 presents the Scala constructs identified in the preliminary research [29]. Section 2.3
discusses code quality characteristics and metrics.

2.1 Multi-Paradigm Programming
Multi-paradigm programming is a broad term that can be used for any combination of pro-
gramming paradigms. In this thesis, multi-paradigm programming refers to the combination of
object-oriented programming and functional programming.

Functional programming is part of the declarative programming paradigm. In declarative pro-
gramming, the program logic is defined without describing the control flow. Functional program-
ming originates from Lambda Calculus [12], a mathematical logic for expressing computations
based on function abstraction, application and composition. In pure FP languages, state and
side-effects are avoided and the type system is often based on algebraic data types.

Alan Kay originally introduced object-oriented programming in 1966 to define objects that encap-
sulate their internal state and communicate by passing messages [28]. Nowadays, object-oriented
programming is often considered an extension of the imperative and procedural programming
paradigms. This means objects represent their state using data fields and communicate using
procedures (also known as methods). The state of the program can be changed by modifying
fields and the control-flow is described in the procedures. Concepts like inheritance and poly-
morphism have also become part of the object-oriented programming paradigm.

Object-oriented programming can be seen as a paradigm on its own separate from the pro-
cedural and imperative paradigms. In this case object-oriented only refers to the type system
and encapsulation, and not to the program logic implementation. Within this thesis, we gen-
erally refer to object-oriented as an extension of imperative and procedural programming, since
this is the definition used within Scala, and will explicitly mention when we only refer to the
type system and encapsulation properties of object-oriented programming.

When combining OOP and FP into a single multi-paradigm language, the type system and
data encapsulation is often based on the OOP system. MP languages often contain constructs
to make the OOP type system more suitable for functional programming, like making it easy
to define objects that only act as data containers and having built-in (anonymous) function
types. When combining OOP and FP, the FP language is no longer pure. The addition of OOP
introduces mutable state and side-effects to the language.

10

2.2 Scala constructs
In this section, the overall design of Scala and the constructs identified in the preliminary research
[29] are discussed to give the reader an idea of the Scala language. Afterwards, the combination of
constructs in Scala is analysed and compared to their equivalents in pure OOP or FP languages.
The goal is to analyze which constructs Scala contains and how they differ from OOP or FP
languages. Additional info on Scala can be found in the Scala language tour [43] or the language
specification [42].

2.2.1 Overall design
Scala is a statically typed JVM language that combines object-oriented and functional program-
ming. Scala is designed to fully support both OOP and FP styles of programming [42]. Scala
uses class-based object-oriented programming, where classes describe the structure of each ob-
ject. Objects are used for the type system in Scala. Scala contains additional functionality to
make it easier to use objects as algebraic data types for functional programming.

2.2.2 OOP constructs
In this section, the Scala constructs related to classes, objects, methods or changing the state of
the program are discussed.

Variables

Variables can change the state of a program and are therefore classified as OOP construct.
Variables in Scala can be mutable or immutable. Mutable variables can be reassigned different
values as long as the type matches, immutable variables can only be assigned at declaration [33].
The keyword var is used for defining mutable variables and val is used for immutable variables.
Immutable variables are comparable to final variables in Java. If an immutable variable contains
a mutable object, for example a mutable list, this object can still be modified.

Classes

Classes are one of the basic building blocks of the OOP paradigm. Classes in Scala are similar
to Java or C#. A class has one or more constructors (by default an empty constructor). Scala
classes can have the same modifiers as Java classes (e.g. abstract, protected, etc.). Classes in
Scala cannot have static values or methods. To use a class they have to be instantiated. An
instance of a class is called an object. In Scala, every value is an object [33]. This includes
values that are not objects in Java, like primitives. In this sense, Scala is a pure object-oriented
language in contrast to Java.

A class can extend another class. Scala classes are single inheritance, which means that it is
only possible to extend a single class at a time. The top-level class, which every class inherits, is
the Any class. It defines certain universal methods such as equals, hashCode, and toString. The
Any class has two subclasses, AnyVal and AnyRef [43].

AnyVal is used for value objects, which contain a value that corresponds to a primitive value
in Java (for example, booleans, integers or doubles). Even the equivalent to a void keyword in
Java, which indicates that a method does not return any type, is represented by an object. In
Scala, this is the Unit object. AnyRef is used for reference classes, which are used for everything

11

that is not a value object. This makes AnyRef similar to Object in Java. See Figure 2.1 for an
overview of the Scala type hierarchy.

AnyVal

Any

AnyRef (java.lang.Object)

Double Float Long Int Short Byte Unit Boolean Char List Option YourClass

Null

Nothing

Figure 2.1: Scala type hierarchy.

Objects

In Scala, it is possible to declare an object directly. Such an object is similar to a singleton class
and does not have to be instantiated. Instead, it can be accessed from anywhere in the code
[43]. These singleton objects replace static values and methods. Singleton objects can share the
same name with a class. In this case, they are called companion objects and contain the static
members of the class [23].

Two special methods can be declared in an object, namely the apply and unapply methods.
The apply method is similar to a factory method [14] since it takes certain arguments and re-
turns an instantiated object. The unapply method does the opposite, it takes an object and tries
to give back the arguments [43]. The unapply method is mostly used in pattern matching (see
Section 2.2.3). An example of the apply and unapply methods can be found in Listing 2.1.

1 class FullName(first: String, last: String) // Class definition omitted
2

3 object FullName {
4 // Creates a new instance
5 def apply(first: String, last: String): FullName = new FullName(first, last)
6

7 // Return value of unapply is always the Option class
8 // Option has 2 instances: Some(value) and None
9 def unapply(name: FullName): Option[(String, String)] = Some((name.first, name.last))

10 }
11

12 // Calls FullName.apply("Bob", "Miller")
13 val name = FullName("Bob", "Miller")
14

15 name match {
16 // Calls FullName.unapply(name), assigns the result to first and last
17 case FullName(first, last) => println("Last name is", last)
18 case _ => println("Not a full name")
19 }

Listing 2.1: Scala apply-unapply example.

12

Case classes and case objects

Scala has case classes and case objects. Case classes are a shorthand to create a class with the
given parameters as values. Getters, setters, equals, hashcode, copy and toString methods are
automatically created. A companion object with apply and unapply methods is also automatically
created. This makes case classes easy to use as data types. Case objects are similar to case classes,
except they do not have values. There can only be a single instance of a (case) object [1].

Traits

Scala Traits are similar to interfaces or abstract classes in other OOP languages. Traits can
contain variables, non-abstract and abstract methods. Traits cannot have a constructor or be
instantiated and are multiple inheritance, which means they can extend multiple other traits.
Traits can be mixed in with classes. When a trait is mixed in with a class, the class inherits
the variables and methods of the trait, and abstract methods have to be implemented. Multiple
traits can be mixed in with a single class. If two traits contain methods with the same name
there is a naming collision, which has to be resolved in the class itself [52]. It is possible to
specify that a type consist of multiple traits. These are called compound types [43]. An example
of traits, mixins and compound types can be found in Listing 2.2.

1 // Extend Java cloneable interface
2 trait Cloneable extends java.lang.Cloneable{
3 // Default implementation: call Java cloneable and cast result
4 override def clone(): Cloneable = super.clone().asInstanceOf
5 }
6

7 trait Resetable {
8 // Abstract method
9 def reset(): Unit

10 }
11

12 // Class with multiple mixins
13 class Counter extends Cloneable with Resetable {
14 var count = 0
15 def inc(): Unit = count += 1
16

17 // Implement resetable trait
18 override def reset(): Unit = count = 0
19 }
20

21 // Method with compound type parameter
22 def cloneAndReset(obj: Cloneable with Resetable): Cloneable

Listing 2.2: Scala traits example.

Methods

Methods are another basic building block of the OOP paradigm. Classes, objects and traits in
Scala can have methods, which can be public, protected or private. It is possible to override
inherited methods and methods cannot be static. The return type of methods can be defined or
inferred. For public methods, it is recommended to explicitly define the return type. Methods in
traits or abstract classes do not need an implementation. Method parameters can have default
values [43] and methods can be called with named arguments [43]. An example can be found in
Listing 2.3.

13

1 // Define method with default values
2 def point(x: Double = 0, y: Double = 0, z: Double = 0): Point = new Point(x, y, z)
3

4 val point1 = point(1, 1, 1) // Regular call
5 val point2 = point() // Use default values
6 val point3 = point(z = 2, y = 1) // Use named parameters, x becomes the default value

Listing 2.3: Scala default parameters and named arguments example.

An important distinction from other OOP languages is that methods are implemented using
expressions instead of block statements. Because of this, it is not necessary to use the return
keyword, although this is still possible.

Nesting

Scala classes, object and trait definitions can all be nested. This means that it is possible to
define classes within classes, objects within objects or traits within traits. It is also possible to
mix these definitions (e.g., define a class within an object). Nested classes are called inner classes
[43]. An instance of the outer definition is required to access the inner definitions. An example
of this can be found in Listing 2.4.

1 class Outer {
2 class Inner {
3 def foo(x: Inner): Inner = x
4 }
5 }
6

7 // We need an instance to access the inner class
8 val a = new Outer
9 val b = new Outer

10

11 // a.Inner and b.Inner are two different types
12 val aInner = new a.Inner
13 val bInner = new b.Inner
14

15 // Invalid, wrong type
16 aInner.foo(bInner)

Listing 2.4: Scala inner classes example.

Methods can also be nested. This means that it is possible to define a method within a method.
Nested methods can only be accessed within the method they have been defined in.

Type parameterization

Type parameterization, also called generic types or polymorphism, can be added to classes, traits
and methods. A type parameter is a type that can be specified later. This makes it possible to
define, for example, a generic list (List[A]) which can be used for both integers (List[Int]),
strings (List[String]) or any other object.

Type parameterization supports upper and lower type bounds. The upper type bound T <:
A declares that type parameter T refers to a subtype of type A [33]. A lower type bound T >: A
expresses that the type parameter T refers to a supertype of type A [33]. An example of upper
and lower type bounds can be found in Listing 2.5.

14

1 // Upper type bound
2 // An animal container can also contain subtypes like Dogs
3 class AnimalContainer[T <: Animal]
4

5 class List[+T] {
6 // Lower type bound
7 // A List[Int] can be concatenated with supertypes like List[Number] (returns a List[Number])
8 def concat[U >: T](other: List[U]): List[U]
9 }

Listing 2.5: Scala type bounds example.

By default, the subtyping of parameterized classes is invariant, meaning that Class[A] is only
a subtype of Class[B] if B = A. This behavior can be changed with variance annotations.
Class[+A] is a covariant class. This means Class[B] is a subtype of Class[A] if B is a sub-
type of A. Class[-A] is a contravariant class. Contravariance is the opposite of covariance. So
if Class[A] is a subtype of Class[B] if B is a subtype of A [43]. An example of variance can be
found in Listing 2.6.

1 // --- Example classes ---
2 abstract class Animal {
3 def name: String
4 }
5 case class Cat(name: String) extends Animal
6 case class Dog(name: String) extends Animal
7

8 // --- Parameterized classes ---
9 class Container[A] {...} // Invariant

10 class List[+A] {...} // Covariant
11 class Printer[-A] {...} // Contravariant
12

13 // --- Covariance example ---
14 val cats: List[Cat] = List(Cat("Whiskers"), Cat("Tom"))
15 def printAnimalNames(animals: List[Animal]) ...
16 // Covariance, List[Cat] is an instance of List[Animal] because Cat extends Animal
17 printAnimalNames(cats)
18

19 // --- Contravariance example ---
20 def printMyCat(printer: Printer[Cat]): Unit = printer.print(myCat)
21 val animalPrinter: Printer[Animal] = (animal: Animal) => println("Animal name: " + animal.name)
22 // Contravariance, Printer[Animal] is an instance of Printer[Cat] because Cat extends Animal
23 printMyCat(animalPrinter)
24

25 // --- Invariance example ---
26 val catContainer: Container[Cat] = Container(Cat("Felix"))
27 // Not allowed, Container is invariant so Container[Cat] is not an instance of Container[Animal]
28 val animalContainer: Container[Animal] = catContainer
29 // Oops, we'd end up with a Dog assigned to a Cat
30 animalContainer.setValue(Dog("Spot"))
31 val cat: Cat = catContainer.getValue

Listing 2.6: Scala variance example.

In the invariance example, we see what could go wrong if Container would be covariant. To
ensure type safety it is not possible to declare mutable covariant and contravariant types [34].
In the example case, that means it is not possible to define a mutable covariant container, so we
cannot end up with a Dog assigned to a Cat.

15

2.2.3 FP constructs
In this section, the Scala constructs related to functions, pattern matching and list comprehension
are discussed.

Functions

Functions are the basic building block of the FP paradigm. In Scala, function definitions return
a Function object [35]. This object can be called, executing the function and returning the result.
Like methods, the return type of a function can be inferred. Function objects can be assigned
to a variable or passed to another function or method like any other object. Functions can be
specified as a method parameter. This means it is possible to define higher-order functions [34].
Functions that are directly passed to another function are often called lambdas or anonymous
functions.

Unlike methods, functions have no support for default parameters or named arguments [39].
Methods can automatically be converted to functions. However, converting functions to meth-
ods is not automatic and requires defining a new method. When a method is converted to a
function, the ability to use named arguments or default values is lost. For an example of functions
see Listing 2.7.

1 def myMethod(x: Int): Int = x * 2 // Define a method
2 val myFunction: Int => Int = x => x * 2 // Define a function and assign to variable
3 myMethod(2) // Call a method
4 myFunction(2) // Call a function
5

6 def higherOrder(x: Int => Int): Int = x(2) // Takes a function object as parameter
7 higherOrder(x => x * 4) // Call with function directly
8 higherOrder(myFunction) // Call with previously defined function
9 higherOrder(myMethod) // Methods can automatically be converted to functions

Listing 2.7: Scala functions example.

Currying

In Scala, it is possible to use currying. Currying is the process of transforming a function
that takes multiple arguments into a function that takes a single argument and returns another
function that accepts further arguments. By default, this requires the function or method to
define multiple parameter lists. When calling this method or function with the first parameter
list, it will return a function that can be called with the second parameter list [33]. Functions,
even those with a single parameter list, can also be converted to curried variants that have
a parameter list for each individual argument. They can also be converted (back) to tupled
variants, which have a single parameter list [52]. To apply these conversions to methods they
have to be converted to functions first, losing the ability to use named arguments and default
values. For an example of currying see Listing 2.8.

1 val add1: (Int, Int) => Int = (x, y) => x + y // Regular function (single parameter list)
2 val add2: Int => Int => Int = x => y => x + y // Curried function (multiple parameter lists)
3 def add3(x: Int, y: Int): Int = x + y // Regular method (single parameter list, similar to add1)
4 def add4(x: Int)(y: Int): Int = x + y // Curried method (multiple parameter lists, similar to add2)
5

6 add1(2) // Invalid, requires 2 arguments
7 add1(2,2) // Valid, call uncurried function with both arguments
8 add2(2,2) // Invalid, requires 1 argument at a time
9 add2(2) // Valid, returns function that takes second argument

16

10 add2(2)(2) // Valid, call curried function with both arguments
11

12 val x: Int => Int = add2(2) // Call with first argument and assign resulting function
13 val result: Int = x(2) // Call with second argument and get result
14

15 val add5: Int => Int => Int = add1.curried // Transform add1 into curried function (similar to add2)

Listing 2.8: Scala currying example.

Pattern matching

Scala supports pattern matching, which can be done based on value or type. During pattern
matching, it is also possible to match or extract values for any class that has a companion object
with an unapply method. It is also possible to add guards to patterns using if statements [43].
For an example of pattern matching see Listing 2.9.

1 case class FullName(first: String, last: String)
2

3 val x: Any = ???
4 x match {
5 case 42 => println("Match by value")
6 case FullName => println("Match by type")
7 case FullName(_, x) => println("Match and unpack type, last name is", x)
8 case FullName("Bob", last) => println("Match by type and value, last name is", last)
9 case FullName(first, last) if first.length < last.length => println("Match with guard")

10 case _ => println("Match everything else")
11 }

Listing 2.9: Scala pattern matching example.

Everything is an expression

In Scala, everything is an expression, like in FP languages. Scala does not require the use of
the return keyword, since it uses the result of the expression will be used instead. In a block
expression, the result is the result of the last expression in the block. In an if expression, the
result is the result of the expression in the evaluated branch. In a while and a do-while expression,
the result is always the Unit object, which is an empty singleton object [35]. An example can be
found in Listing 2.10

1 def doSomething(): Boolean
2

3 def myMethod(): Int = { // Block expression, result is the last expression in the block
4 val result = doSomething()
5 if (result) { // Last expression in the method block, result is the evaluated branch
6 42 // Last expression of the block expression in the top branch
7 } else {
8 -1 // Last expression of the block expression in the bottom branch
9 }

10 }
11

12 // Same as above, but without blocks
13 def myMethod2(): Int = if (doSomething()) 42 else -1
14

15 // Valid, but assignment is useless since while always returns Unit
16 val x: Unit = while(doSomething()) myMethod()

Listing 2.10: Scala “everything is an expression” example.

17

Lazy evaluation

There are two main methods of evaluation in a programming language: strict evaluation and
lazy evaluation. The former is often used in OOP languages, while the latter is often used
in FP languages. With strict evaluation, variables and expressions are evaluated immediately.
With lazy evaluation, variables and expressions are only evaluated when they are needed. This
reduces unnecessary computations, makes it easier to use infinite data structures and makes it
easier to parallelize code. However, the programmer can no longer rely on the execution order
or if and when side-effects are triggered. This makes lazy evaluation unsuited for imperative
programming, which explicitly specifies the control flow and relies on side-effects. By default,
Scala is strictly evaluated. Scala does have support for lazy variable evaluation by prepending
the lazy keyword to the variable definition and there is a lazily evaluated list available in the
standard library.

2.2.4 MP constructs
In this section, the Scala constructs that are classified as both OOP and FP (MP) are discussed.

For-comprehensions

Scala for-comprehensions are a combination of for-loops in OOP languages and list-comprehensions
in FP languages. For-comprehensions can be used to traverse collections. It is possible to tra-
verse multiple collections or collections within collections with a single for-comprehension. It is
also possible to assign variables and add guards with a for-comprehension. After defining the
for-comprehension, either an expression follows or the yield keyword. The expression gets called
every iteration, making it similar to a for-loop. The yield keyword returns a list, making it
similar to a list comprehension [52]. An example can be found in Listing 2.11.

1 val matrix = List(
2 List(0, 1),
3 List(2, 3)
4)
5

6 // Similar to a for-loop
7 val foo: Unit = for (
8 x <- matrix; // x becomes a value from matrix
9 y <- x; // y becomes a value from x

10 if y > 0 // only call iteration if y is larger than 0
11) {
12 print(y) // prints y
13 y // result of block becomes y, useless in for loop
14 }
15 // Prints 123, returns Unit
16

17 // Similar to list-comprehension
18 val bar: List[Int] = for (
19 x <- matrix; // x becomes a value from matrix
20 y <- x; // y becomes a value from x
21 if y < 3 // only call iteration if y is smaller than 3
22) yield {
23 print(y) // prints y
24 y // result of block becomes y, is added to resulting list
25 }
26 // prints 012, returns [0, 1, 2]

Listing 2.11: Scala for-comprehension example.

18

2.2.5 Other constructs
In this section, the Scala constructs that remain unclassified are discussed.

Operator overloading

In Scala, any arity 1 method can be used in infix notation. This means that methods with a
single argument like list.add(1) can be written as list add 1. Operators themselves are also
defined as methods within Scala. Because of this, operators can also be called in dot notation.
For example, 1 + 1 can be written as 1.+(1). It is also allowed to use characters like + and
- in method names, making it possible to override/overload operators. The precedence of infix
operators is based on the first character[33].

Tuples

Scala has native support for tuples. They can be defined by putting multiple values between
round brackets. They can be specified as a type for variables, arguments, functions and methods
[43].

Annotations

Scala has annotations that can be used for meta-programming [33]. You can annotate classes,
methods, fields, local variables and parameters [23]. One way annotations can be used is to
ensure correctness. For example, @tailrec ensures the method is tail-recursive. Annotations can
also be used to affect code generation. For example, @inline will attempt to inline methods. Fur-
thermore, some constructs that are less commonly used keywords in Java have been implemented
in Scala using annotations instead (e.g., @volatile, @transient and @native).

Implicit parameters

A method can define implicit parameters. The method can be called with or without these
implicit parameters. If the method is called without them, the compiler attempts to get an
implicit value for the parameter that matches the type. Implicit values are any variable or
method that has been defined with the implicit keyword within the current scope. This can be
combined with type parameterization to define different implicit values for different types [52].
For an example of implicit parameters see Listing 2.12.

1 abstract class Monoid[A] {
2 def add(x: A, y: A): A
3 }
4 // Define implicit values
5 implicit val intMonoid: Monoid[Int] = (x: Int, y: Int) => x + y
6 implicit val stringMonoid: Monoid[String] = (x: String, y: String) => x concat y
7

8 // Method with implicit parameter
9 def sum[A](x: A, y: A)(implicit add: Monoid[A]): A = add.add(x, y)

10

11 sum(1, 2) // Uses intMonoid implicitly
12 sum(1, 2)(intMonoid) // Uses intMonoid explicitly
13 sum("Hello", "World") // Uses stringMonoid implicitly
14 sum(1.5, 3.5) // Compile error: no matching implicit in scope

Listing 2.12: Scala implicit parameter example.

19

Implicit conversions

Implicit conversions are methods that convert a value from type A to type B. If an expression
does not conform to the expected type, or a member of a value is accessed that does not exist
for that type of value, the Scala compiler checks whether there is an implicit conversion in scope
that can convert the expression to the expected type or convert the value to a type that does
have the accessed member [52]. The compiler only attempts direct conversions and never chains
conversions. If there are multiple valid conversions, there is an ambiguity and the compiler
throws an error [23]. For an example of implicit conversions see Listing 2.13.

1 // Converts Scala Int to Java Integer (part of Scala standard library)
2 implicit def int2Integer(x: Int): java.lang.Integer = java.lang.Integer.valueOf(x)
3

4 val javaList = new java.util.ArrayList[String]()
5 javaList.add(0, "Test") // Scala Int implicitly converted to Java Integer

Listing 2.13: Scala implicit conversion example.

2.2.6 Constructs overview
This section contains an overview of the identified constructs. The overview can be found in
Table 2.1.

OOP constructs FP constructs MP constructs Other constructs
Variables Functions For-comprehensions Operator overloading
Classes Currying Tuples
Objects Pattern matching Annotations
Case classes/objects Everything is an expression Implicit parameters
Traits Lazy evaluation Implicit conversions
Methods
Nesting
Type parameterization

Table 2.1: Identified Scala constructs.

2.2.7 Analysis
When analysing the combination of constructs in Scala, one of the first things that stands out is
the high degree of similarity between methods and functions. They both serve the same purpose
and the syntax is similar. Methods support additional features, like default parameter values
and named arguments. In addition, a method can automatically be converted to a function when
needed. Because of this, there seems to be no reason to use functions instead of methods, except
when passing an anonymous function.

Another interesting difference between methods and functions is the return statement. The
return statement is not needed in Scala, yet methods still support it whereas functions do not.
Return statements within methods can be non-local. This means that it is possible to define a
function within a method, use a return within the function, and it returns a value for the method
instead. An example of this is shown in Listing 2.14. This behaviour is probably not intended
by the developer.

20

1 def myMethod(): Int = {
2 val innerFunction = () => {
3 return -1 // Non-local return, will return value for myMethod() instead
4 }
5 innerFunction() // myMethod() returns -1 when innerFunction() is called
6 0 // Return 0; this expression is never reached
7 }

Listing 2.14: Scala non-local return example.

If we compare the OOP constructs in Scala to those of pure OOP languages, most of the con-
structs remain unchanged. The main difference is that all statements in Scala are expressions.
Block statements and while-loops have return values. Another difference is that traditional for-
loops are not present in Scala. Scala only has for-comprehensions, which is a more extensive
version of the for-each loop. Traditional for-loops can be emulated with a for-comprehension
over a range of numbers.

If we compare the FP constructs in Scala to those of pure FP languages, more differences can be
found. One of the most important differences is that functions have access to variables outside
their scope. This means that functions can change the state of the program. Within pure FP
languages, this is only possible through the use of monoids. Many of the higher-order functions
within FP are based on the idea that functions do not change the state on the program. This
makes it possible to change the execution order without changing the result, something that can
not be relied upon within Scala.

Another difference is the type system. Scala’s type system is based on the OOP type system
where every type is an object and every object is a type. Type systems in pure FP languages
are often defined using algebraic data types [26]. For example, a binary tree in the FP language
Haskell can be defined as follows: data Tree = Empty | Leaf Int | Node Tree Tree. Scala
includes constructs that make the OOP type system more suitable for FP. Case classes with
support for pattern matching make it easier to use classes as algebraic data types. The advanced
type interference of the compiler reduces the type signatures that are needed. This makes it
easier to use complex types. Finally, the combination of everything is an object (including func-
tions and tuples) and everything is an expression allow for a functional programming style.

The last difference is the evaluation method. FP languages often use lazy evaluation. By
default, Scala is strictly evaluated, but it has some support for lazy evaluation (lazy variable
evaluation and a lazily evaluated list type). However, most constructs and collections in the
standard library use strict evaluation.

If we look at the other constructs that are present in Scala, there are two constructs that can
only be found in Scala, namely implicit parameters and implicit conversions. These are powerful
constructs that, because of their implicit nature, can be difficult to debug when used incorrectly.
Furthermore, importing implicit parameters or conversions into scope can cause unwanted side-
effects.

The differences presented in this analysis should be taken into account when using existing
OOP/FP metrics or when defining metrics for Scala. The combination of higher-order func-
tion and changing the state of the program does not occur in either paradigm on their own.
As discussed, non-local returns and implicit parameters/conversions can cause unexpected be-

21

haviour. In addition, being able to use block statements and while-loops as values could cause
mistakes that go unnoticed during compilation. Finally, the behaviour of for-comprehensions
changes based on a keyword in the middle of the expression (demonstrated by Listing 2.11).
This makes them more difficult to read and understand. All of these differences can affect the
fault-proneness.

2.3 Code quality
The ISO/IEC 25010:2011 [25] standard defines software product quality as the degree to which
the system satisfies the stated and implied needs of its various stakeholders, and thus provides
value. It defines eight quality characteristics:

• Functional Suitability Degree to which a product or system provides functions that meet
stated and implied needs when used under specified conditions.

• Performance efficiency Performance relative to the amount of resources used under
stated conditions.

• Compatibility Degree to which a product, system or component can exchange information
with other products, systems or components, and/or perform its required functions while
sharing the same hardware or software environment.

• Usability Degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use.

• Reliability Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time.

• Security Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate to their
types and levels of authorization.

• Maintainability Degree of effectiveness and efficiency with which a product or system
can be modified to improve it, correct it or adapt it to changes in the environment, and in
requirements.

• Portability Degree of effectiveness and efficiency with which a system, product or com-
ponent can be transferred from one hardware, software or other operational or usage envi-
ronment to another.

Code quality is strongly related to performance efficiency, reliability, security and maintainability.
Source code metrics often target the measurement of reliability and maintainability. Therefore,
we focused on those two aspects.

2.3.1 Maintainability
Software maintainability, as defined by the ISO/IEC 25010:2011 standard, is composed of the
following sub-characteristics [25]:

• Modularity Degree to which a system or computer program is composed of discrete com-
ponents such that a change to one component has minimal impact on other components.

22

• Reusability Degree to which an asset can be used in more than one system, or to build
other assets.

• Analysability Degree of effectiveness and efficiency with which it is possible to assess the
impact on a product or system of an intended change to one or more of its parts, or to
diagnose a product for deficiencies or causes of failures, or to identify parts to be modified.

• Modifyability Degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality.

• Testability Degree of effectiveness and efficiency with which test criteria can be established
for a system, product or component and tests can be performed to determine whether those
criteria have been met.

The Software Improvement Group (SIG) is an organization that helps other organizations mea-
sure, evaluate and improve their software quality. They have defined a maintainability model
that can be used to measure the maintainability of a software product[50]. This model defines
the following measurements:

• Volume Overall size of the source code of the software product. Size is determined from
the number of lines of code per programming language normalized with industry-average
productivity factors for each programming language. Volume shall be rated on a scale that
is independent of the type of software product.

• Duplication Degree of duplication in the source code of the software product. Duplication
concerns the occurrence of identical fragments of source code in more than one place in the
product.

• Unit complexity Degree of complexity in the units of the source code. The notion of unit
corresponds to the smallest executable parts of source code, such as methods or functions.

• Unit size Size of the source code units in terms of the number of source code lines.

• Unit interfacing Size of the interfaces of the units of the source code in terms of the
number of interface parameter declarations.

• Module coupling Coupling between modules in terms of the number of incoming de-
pendencies for the modules of the source code. The notion of module corresponds to a
grouping of related units.

• Component balance Size distribution of top-level components. The notion of top-level
components corresponds to the first subdivision of the source code modules of a system
into components, where a component is a grouping of source code modules.

• Component independence Percentage of code in modules that have no incoming de-
pendencies from modules in other top-level components.

• Component Entanglement Percentage of communication between top-level components
in the system that are part of commonly recognized architecture anti-patterns.

23

2.3.2 Reliability
Software reliability, as defined by the ISO/IEC 25010:2011 standard, is composed of the following
sub-characteristics [25]:

• Maturity Degree to which a system, product or component meets its needs for reliability
under normal operation.

• Availability Degree to which a system, product or component is operational and accessible
when required for use.

• Fault tolerance Degree to which a system, product or component operates as intended
despite the presence of hardware or software faults.

• Recoverability Degree to which, in the event of an interruption or a failure, a product
or system can recover the data directly affected and re-establish the desired state of the
system.

24

Chapter 3

Validation methodology

This chapter discusses the methodology used to validate metrics. In this thesis, two different
methodologies are used. Section 3.1 describes Briand’s validation methodology. Section 3.2
describes Landkroon’s validation methodology. Section 3.3 describes how the measurements
from both validation methodologies are used to predict fault-proneness. Finally, Section 3.4
describes how prediction performance is evaluated in this work.

3.1 Briand’s validation methodology
A common method for metric validation is Braind’s validation methodology [6], which investi-
gates the relation between the internal attribute A1 and the external attribute A2. Briand’s
methodology relies on the following assumptions:

1. The internal attribute A1 is related to the external attribute A2

2. Measure X1 measures the internal attribute A1

3. Measure X2 measures the external attribute A2

The suitability of a metric is validated by evaluating how well it can be used as a predictor for
fault-proneness. The fault-proneness is the likelihood a piece of software contains faults. Fault-
proneness is commonly used to validate metrics and to give an indication of the code quality
[6, 11]. Since the fault-proneness cannot be measured directly, it is estimated by counting the
number of faults a piece of code contained during its lifetime.

Measure X1 is the metric to validate. This measure quantifies defined attributes of the code.
These measured attributes of the code are the internal attribute A1. Measure X2 is the fault-
proneness measurement of the code. The fault-proneness is the external attribute A2.

Measure X1 measures the attributes of the latest version of the code. Measure X2 measures
the fault-proneness of the code, which is done over the entire lifecycle of the code. The relation-
ship between A1 and A2 is investigated using a prediction model. This is done using regression
analysis. The resulting performance of the prediction model, which indicates how well a met-
ric can be used as indicator for fault-proneness, is evaluated to determine the suitability of the
metric.

25

3.2 Landkroon’s validation methodology
Landkroon has modified Briand’s validation methodology [30], so that instead of measuring the
metrics values of the latest version, metric values are measured each time the code contains a
fault. Only the metric values of faulty pieces of code are measured. The metric values of all
non-faulty pieces of code are still measured based on the latest version of the code. Landkroon’s
reasoning behind this modification is that in projects with longer lifecycles, classes can be refac-
tored or rewritten and the metric values of the final version of the code are not indicative of the
version of the code when it contained faults.

The main difference between Briand’s and Landkroon’s validation methodology, is what one
wants to measure. For example, assume we want to validate a metric for fault-proneness. In
this case, Briand’s methodology measures whether the metric gives an indication for the fault-
proneness of the final product. This is especially useful when assessing the quality of the final
products. In contrast, Landkroon’s methodology measures whether the metric gives an indication
of the fault-proneness of the intermediate product. This is especially useful for detecting faults
during the development process. Nowadays, software often does not have a final version anymore
and is continuously being developed, i.e., continuous deployment is becoming more and more
common. To ensure faults do not end up in production it is important that the checks before
deployment detect potential faults. Therefore, we would argue that Landkroon’s methodology
is more suitable for modern-day software development.

3.3 Relating measurements to fault-proneness
Investigating the relationship between measurements and fault-proneness is done using a predic-
tion model that predicts the fault-proneness based on the metric measurements [18]. This predic-
tion model uses regression analysis. Generally logistic regression is used as regression model [4, 6]

Logistic regression is used to describe the relation between a dependent variable (response or
outcome) and one or more independent variables (predictors) [24]. The dependent variable is
dichotomous (e.g., true or false) [36]. The logistic model estimates the possibility of one of the
values of the dependent variable using the independent variables. In our case, logistic regression
can be used to predict the chance of code being faulty or not based on the metric values. Two
different types of logistic regression are used:

Univariate logistic regression Univariate logistic regression uses only one independent vari-
able and describes the relation between the independent and the dependent variable. Univariate
regression is performed for each independent variable and is helpful to determine whether there
is a relation between the independent and the dependent variable [4]. The prediction model is
constructed using Equation 3.1. In this equation β0 is a constant, X1 is the independent variable
and β1 is the coefficient of the independent variable.

P (faulty = 1) =
eβ0+β1X1

1 + eβ0+β1X1
(3.1)

Multivariate logistic regression Multivariate logistic regression predicts the dependent vari-
able using multiple independent variables. Multivariate regression is helpful to evaluate the pre-
dictive capability of the metrics that have been assessed sufficiently significant in the univariate
analysis [4]. It can be used to validate which metrics are the best predictors and whether a set

26

of metrics can be improved by adding other metrics. The prediction model is constructed using
Equation 3.2.

P (faulty = 1) =
eβ0+β1X1+β2X2+···+βnXn

1 + eβ0+β1X1+β2X2+···+βnXn
(3.2)

Predicted negative Predicted positive
Actual negative TN (true negative) FP (false positive)
Actual positive FN (false negative) TP (true positive)

Table 3.1: Example confusion matrix.

3.4 Prediction performance evaluation
Prediction models are commonly validated using cross-validation [47]. In our validation, stratified
k-fold cross-validation with 10 folds is used. k-fold cross-validation randomly partitions the data
into k equally sized subsamples. A single subsample is used for the test set and the remaining k−1
subsamples are used for the training set. This is repeated k times with each of the subsamples
used exactly once as test set. The results of all the runs are aggregated to produce a single
estimation. Stratified k-fold ensures the balance between faulty and non-faulty measurements is
the same for each fold, because the ratio between faulty and non-faulty measurements is likely to
be unbalanced. Weights are assigned to both classes while training the logistic regression. The
weights are inversely proportional to the class frequencies. The resulting prediction model has
several measures that can be used to evaluate the performance, goodness of fit and significance
of the model:

Precision The precision is the ratio of true positives to the total amount of predicted positives
[5]. The precision is 100% when a piece of code predicted as faulty is always faulty. The
lower the precision the higher the odds that a piece of code predicted as faulty is actually
non-faulty. With the values of Table 3.1, the equation is as follows:

Precision =
TP

TP + FP
(3.3)

Recall The recall is the ratio of true positives to the total amount of actual positives [5]. The
recall is 100% when a piece of faulty code will always be predicted as faulty. The lower the
recall the higher the odds that a piece of faulty code is predicted as non-faulty. With the
values of Table 3.1, the equation is as follows:

Recall = TP

TP + FN
(3.4)

Matthews correlation coefficient (MCC) There are several measures that can be used to
summarise the performance of a binary classification model in a single number, such as
accuracy, the F1-score and Matthews correlation coefficient. MCC is a statistical rate
that produces a high score only if the prediction obtained proper results in all of the four
confusion matrix categories (see Table 3.1), proportionally to the size of those categories
[10]. This measure returns a value between −1 and +1. A coefficient of +1 represents a
perfect prediction, 0 no better than random prediction and −1 indicates total disagreement

27

between prediction and observation. When the dataset is unbalanced (the number of sam-
ples in one class is much larger than the number of samples in the other classes), accuracy
and F1-score cannot be considered reliable measures anymore, because they provide an
over-optimistic estimation of the classifier ability on the majority class [17]. Since our data
sets are likely to be unbalanced (more non-faulty than faulty code), we have opted to use
MCC. The formula for MCC is as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.5)

28

Chapter 4

Implementation

This chapter discusses the implementation of our analysis framework. Section 4.1 describes the
criteria for the data and which projects have been selected. Section 4.2 presents an overview of
the framework design. Section 4.3 presents how the fault analysis is done. The code analysis
is presented in Section 4.4. Section 4.5 discusses the validation workflow. Section 4.6 presents
how the results are analysed. Finally, the benefits and drawbacks of the chosen approach are
discussed in Section 4.7.

4.1 Data collection
Data are collected from open-source projects, which need to satisfy the following criteria:

Scala Since the metrics and code analysis are based around Scala, the projects need to be
written (mainly) in Scala.

Version Control For the validation of metrics, previous versions of the code need to be ac-
cessible. The changes made between each version of the code should also be accessible.
Therefore, version control is a prerequisite.

Issue tracker To gather faults we need to know which faults have been found and what changes
fixed these faults. Therefore, an issue tracker that keeps track of the faults is a prerequisite.
Since issue trackers are often also used to track feature requests and other info, it is a
prerequisite that faults are labelled separately from the other issues. Additionally, there
needs to be a link between the issue and the changes that resolved the issue.

Maturity There should be enough data available to analyse. Longer running projects are more
likely to have found faults and have accumulated more fixes over time. This makes them
more suitable for analysis, suitable projects should have at least 100 issues labelled as
faulty.

Data-set balance The resulting data set should contain enough faulty code compared to the
non-faulty code. If less than 1% of the code is faulty the results could be unreliable, since
single incidents have a large influence on the results.

There are multiple version control systems and issue trackers available. Our implementation uses
Git as version control system in combination with the GitHub Issue Tracker, since these are the
most commonly used for open-source Scala projects.

29

4.1.1 Selected projects
For the validation of metrics data are needed. Projects have been selected using the official Scala
Library Index [41], by filtering on the latest Scala version (2.13 at the time of writing) and then
sorting by stars. The top 40 projects have been filtered based on the criteria described above.
Finally, projects with less than 100 faulty issues, 2.5% faulty functions or 5% faulty objects
have been filtered out to make sure enough data are available. The following projects have been
selected:

Akka is an actor-based framework for building concurrent, reactive and distributed appli-
cations. At the time of writing, the project had 25,164 commits, 730 contributors
and 734 closed issues labelled as fault. Data for this project were collected on the
2nd of August 2020 (url: https://github.com/akka/akka, branch: master, commit:
142a63f600af6b8b805a10f0f401a4615237be48)

Gitbucket is a Git web platform with GitHub API compatibility that can be privately
hosted. At the time of writing, the project had 5,077 commits, 153 contributors and
311 closed issues labelled as fault. Data for this project were collected on the 2nd of
August 2020 (url: https://github.com/gitbucket/gitbucket, branch: master, commit:
3534b7172d4b8ee439349817a20d73e20e960299)

Http4s is a Scala interface for HTTP services. At the time of writing, the project had 9,505
commits, 287 contributors and 153 closed issues labelled as fault. Data for this project were
collected on the 6th of August 2020 (url: https://github.com/http4s/http4s, branch:
master, commit: 9b588daa6d371d960ba19f8eb6a76a5ae21ea3ec)

Quill provides a domain specific language to express database queries in Scala. At
the time of writing, the project had 2,777 commits, 85 contributors and 181
closed issues labelled as fault. Data for this project were collected on the 6th

of August 2020 (url: https://github.com/getquill/quill, branch: master, commit:
7e7648d7337507083acb39d5f9248e523b165b63)

Scio is a Scala API for Apache Beam and Google Cloud Dataflow inspired by Apache Spark
and Scalding. It is developed by Spotify. At the time of writing, the project had 3,754
commits, 103 contributors and 355 closed issues labelled as fault. Data for this project
were collected on the 6th of August 2020 (url: https://github.com/spotify/scio, branch:
master, commit: e71a3334f64d6b550ca38715e66ac75fa1205012)

Shapeless is a type class and dependent type based generic programming library for Scala.
At the time of writing, the project had 2,344 commits, 119 contributors and 87
closed issues labelled as fault. Data for this project were collected on the 6th of Au-
gust 2020 (url: https://github.com/milessabin/shapeless, branch: master, commit:
3d6ae8f0bb6bc428fd9bc8f926a77af4ab72cce8)

ZIO is a type-safe, composable library for async and concurrent programming in Scala.
At the time of writing, the project had 4,378 commits, 317 contributors and
135 closed issues labelled as fault. Data for this project were collected on the
6th of August 2020 (url: https://github.com/zio/zio, branch: master, commit:
7aefe52a7f43475caa7e6ac9d905655b9b17fb6a)

30

https://github.com/akka/akka
https://github.com/gitbucket/gitbucket
https://github.com/http4s/http4s
https://github.com/getquill/quill
https://github.com/spotify/scio
https://github.com/milessabin/shapeless
https://github.com/zio/zio

4.2 Framework design
An overview of the framework design can be found in Figure 4.1. Each of the square blocks rep-
resents a module within the framework. The ellipses represent resources used by the framework.
This section describes each of the modules and their responsibilities.

CodeAnalysis

GitClient

ResultAnalysisValidator Measurement results
CSVs

Analysis results
CSVs

GitHub issuesGit project

Figure 4.1: Framework design overview

GitClient The GitClient module is responsible for managing the Git project and its issues.
The module can retrieve all commits that refer to faulty issues, it can calculate the changes
between two versions and it can retrieve all files of a certain version of the code. The fault
analysis to determine which commits refer to faulty issues is described in Section 4.3.

CodeAnalysis The CodeAnalysis module is responsible for analysing the code using metrics.
Given a set of files, it can parse the code, run the metrics and return the results in a tree-like
format based on the structure of the code. It contains all the metrics and the utilities needed to
define them. The code analysis is described in Section 4.4.

Validator The Validator module is responsible for running the validation methodology work-
flow. It uses the GitClient module to retrieve files for analysis, getting the faulty commits and
getting the changes made by those commits. Files for analysis are passed to the CodeAnalysis
module, which returns the results back to the Validator module. The results are then processed
and stored in CSV files. The validation workflow is described in Section 4.5.

ResultAnalysis The ResultAnalysis module is responsible for running logistic regression on
the Validator results. It also includes functionality to calculate statistics of the Validator results.
The statistics and logistic regression results are stored in CSV files. The result analysis is de-
scribed in Section 4.6.

31

Algorithm 1: Validator pseudocode
Data:
The Git repository
List of fix commits
List of metrics
Result:
Briand’s methodology results
Landkroon’s methodology results
begin

R←− The Git repository;
F ←− List of fix commits;
M ←− List of metrics;
latestResults←− { };
faultyResults←− { };
latestFiles←− getLatestFiles(R);
foreach file ∈ latestFiles do

path←− getPath(file);
tree←− getTree(file);
resultTree←− getMetricValues(tree,M);
latestResults += (path, resultTree);

end
foreach f ∈ F do

faults←− getNumberOfFixes(f);
changedFiles←− getChangedFiles(f);
// Only analyse files that exist in the latest version
faultyFiles←− {file ∈ changedFiles | containsPath(latestResults,file)};
foreach file ∈ faultyFiles do

path←− getPath(file);
tree←− getTree(file);
resultTree←− getMetricValues(tree,M);
latestResultTree←− getLatestResult(path, latestResults);
diff←− getDiff(path, f);
AddFaults(resultTree, latestResultTree, diff, faults);

end
end
briandResults←− lastestResults;
landkroonResults←− faultyResults ++ removeFaultyResults(latestResults);
return (briandResults, landkroonResults)

end
Function AddFaults(tree, latestResult, diff, faults):

if containsChanges(tree, diff) then
tree.faults += faults;
if existsInLatest(tree, latestResult) then

latestTree←− findInLatest(tree, latestResult);
latestTree.faults += faults;

end
foreach child ∈ tree do

AddFaults(child, lastestResult, diff, faults);
end

end
return

32

4.3 Fault analysis
Faults are counted by analysing the Git commits. Each issue and pull request within a project
has a unique number. Commits can refer to these issues and pull requests by including the
number with a # in front in their title or message. Pull requests can also refer to issues in the
same way as commits.

When a commit refers to an issue and the issue is labelled as a fault, the commit is consid-
ered as a fix commit that has fixed a fault. When a commit refers to a pull request and the pull
request refers to a faulty issue, the commit is also considered a fix commit. A commit or pull
request can refer to multiple faulty issues and thus contain multiple fixes. The total number of
fixes of a commit is the number of unique faulty issues it refers to. All analysed projects should
refer to issues by referencing them in commits or pull requests. The result of the fault analysis
is a list of fix commits combined with the total number of fixes of the commit.

4.4 Code analysis
The code analysis is done using the trees from the Scala compiler, which are an Abstract Syntax
Tree (AST) representation of the code parsed by the compiler. First, all Java and Scala sources
of the version to be analysed are parsed and loaded by the compiler. This is done to resolve im-
ports. Next, each file to be analysed is typed and the resulting tree is retrieved. Since the library
sources are not available, not everything can be typed. However, the compiler will generate the
tree with all available information.

Metrics are run by traversing the tree. There are three types of metrics: file metrics, object
metrics and method metrics. File metrics receive the top-level node, object metrics receive a
module node (a module can be a class, trait or object) and method metrics receive a method
node. The metric can then access all properties of the node or traverse the children of the node
to calculate the metric values. The results have a similar structure to the trees. This means that
each result contains sub-results for each object and method that existed within the tree that
originated the result. The top-level results are always files.

4.5 Validator workflow
First, the latest version of the code is analysed and all the results are stored. Then, for each
fix commit, the diff with the previous version within the current branch is calculated. If there
are files affected by the diff that are also in the latest version, the version of the code before the
commit (which still contains the faults) is analysed. Code is analysed per file, per object and
per method. Each of these files, objects and methods can have faults. The changes of each fix
commit are analysed. If the commit has modified a file, the numer of fixes the commit made are
added to the fault count of the file. All the changes within the modified files are also checked. If
the changes occur within an object or method, the number of fixes is added to their fault count.
This means that if the fault occurs within a method of an object, the fault count of the method,
the object and the file are all incremented with the number of fixes. The number of fixes is also
added to the fault count of the results of the latest version if the file, object or method name
matches.

After all fix commits have been analysed, two sets of results are created.

33

1. A set for Briand’s methodology that contains the results of the latest version, including
the fault counts that were added based on the changes of fix commits

2. A set for Landkroon’s methodology that contains the results of all the faulty files from
the fix commits (files with changes that were also in the latest version) combined with the
results of the latest version for all the non-faulty files

The pseudocode of the validator can be found in Algorithm 1. The information for both sets
of results is processed and written to CSV files. The CSV files contain information either per
method, per object, or per file. In case of files and objects, all metrics that belong to child nodes
(like methods) are summarised by calculating the average, sum and maximum per file or object.

4.6 Result analysis
The result analysis starts by calculating descriptive statistics, which includes information like
minimum, maximum and average metric values. All statistics are then converted to a CSV
and stored. Next, the results are analysed using logistic regression with stratified 10-fold cross-
validation. First, the univariate logistic regression analysis is run for each individual metric. The
prediction performance measures are calculated based on the resulting prediction. The measures
of all metrics are combined in a single CSV and stored. Next, the multivariate logistic regression
analysis is run for all the metrics combined. The resulting prediction performance measures are
then stored. This process is repeated for each CSV file output by the validator, which outputs a
separate file for each combination of methodology (Briand or Landkroon) and granularity (file,
object or method).

4.7 Discussion
There were several options we could have chosen to represent the code. Initially, we used Land-
kroon’s AST [30], which is created by converting compiler trees. During this process, some
information is lost. While developing metrics the lost information was needed and it became
easier to use the compiler trees directly instead of modifying Landkroon’s implementation. Ad-
ditionally, using compiler trees makes it easier to port metrics over to some of the existing Scala
linting tools that also use compiler trees, like Scapegoat [40].

An advantage of using compiler trees is that a lot of information is available, like typing in-
formation. However, since not all sources (e.g., library or external sources) are always available,
the typing information may be incomplete. Tools like Scapegoat circumvent this issue by being
developed as compiler plugins and integrating directly into the build process. This works well for
analysing the code during development. However, when analysing all fix commits of the code,
this becomes difficult to integrate and time-consuming, since the entire build process has to be
replicated for each version.

The use of compiler trees also means Scala code is desugared by the compiler and some infor-
mation is lost. For example, for-expressions are translated to filter, map and foreach expressions
and become indistinguishable from directly using these expressions.

It is possible that a file, object or method gets renamed. These renames are not detected by our
implementation and the renamed unit is not associated with the latest version.

34

The fault-analysis assumes every mentioned issue in the main message of a pull request or com-
mit has been fixed by that pull request or commit. Usually, this is the case. However, sometimes
an issue gets mentioned in the main message for different reasons. Furthermore, sometimes the
comments of a pull-request also mention issues that are fixed by the pull request. These are not
taken into account since the comments also reference issues for different reasons and this occurs
far more often than for the main message. Finally, when merging a pull request using a squash or
merge commit, the commit always refers to the pull request. However, when using a fast-forward
this is not the case. This means some pull request that fix faulty issues may not be taken into
account because we cannot detect the associated commits. Fast-forwards are sometimes used
to update the master branch when there is a separate development branch ahead of the master
branch. Merging issue-fixing pull requests using fast-forwards is not common practice and does
not occur in the selected projects. Therefore, this should not impact the analysis.

35

Chapter 5

Evaluating construct usage

This chapter evaluates the fault-proneness prediction performance of constructs in Scala and the
paradigm scores defined within this chapter. The constructs measurements are defined in Section
5.1. The paradigm scores based on those measurements are defined in Section 5.2. Section 5.3
gives an overview of the projects and analyses the results of the construct measurements and
paradigm scores. Finally, Section 5.4 concludes this chapter by answering RQ1 and RQ2.

5.1 Construct measurement definitions
Scala combines OOP and FP by using OOP for the type system and using imperative and/or
functional constructs for the program logic. When considering OOP as a paradigm separate
from imperative programming, Scala becomes a combination between OOP, FP and imperative
programming that uses OOP to structure the code and uses functional, imperative or a mix of
both for the implementation of the program logic. In this sense, OOP is a neutral paradigm both
present in functional style and imperative style code. For the constructs measurements and the
paradigm score we have focused on the functional and imperative constructs, since the usage of
those differs depending on the paradigm style used within the code.

The measured constructs are based on the constructs identified in Section 2.2. The constructs
have been measured on a method-by-method basis. There are three categories of measurements:
boolean, count and fraction measurements. Each category represents a different way of measur-
ing the constructs and is explained in their own section. Each measurement is indicated by a
number prefixed the first letter of the category they belong to followed by an F for functional
constructs and an O for imperative constructs. To measure the construct usage within objects
the sum, the average and the maximum of all methods has been used.

5.1.1 Boolean measurements
The boolean measurements indicate whether a construct is used or not. This results in a yes
(1) or no (0) and is not affected by how often the construct is used. The overview of boolean
measurements can be found in Table 5.1.

Nr. Name Description: Whether the method ...

BF1 IsRecursive contains a call to itself
BF2 IsNested is nested within another method

36

BF3 HasNestedMethods has nested methods
BF4 HasFunctions uses functions
BF4A IsFunction returns a function
BF4B HasFunctionParameters has parameters that are functions
BF4C HasHigherOrderCalls has calls that have a function as argument
BF4D HasFunctionCalls has calls to a function
BF4E HasCurrying has calls that return a function
BF5 HasPatternMatching uses pattern matching
BF6 HasLazyValues uses lazy values
BF7 HasMultipleParameterLists has multiple parameter lists
BO1 HasVariables uses (mutable) variables
BO1A HasVariableDefinitions defines variables
BO1B HasInnerVariableAssignment has assignments to variables defined within the method
BO1C HasOuterVariableUsage uses variables defined outside of the method
BO1D HasOuterVariableAssignment has assignments to variables defined outside the method
BO2 HasSideEffects uses the Unit1 type
BO2A IsSideEffect returns Unit
BO2B HasSideEffectCalls has calls that return Unit
BO2C HasSideEffectFunctions has functions that return Unit

Table 5.1: Boolean construct measurements.

5.1.2 Count measurements
The count measurements count how often constructs are used. This means that they are affected
by method size and could have correlations with other size metrics like lines of code. The set
of measures corresponds to the boolean measures, except for measures that cannot be counted
more than once (e.g., whether the methods returns a function).

Nr. Name Description: The number of ...

CF1 CountRecursiveCalls calls to itself this method has
CF2 CountNestedDepth methods this method is nested within
CF3 CountNestedMethods nested methods
CF4 CountFunctions references to functions
CF4B CountFunctionParameters function parameters
CF4C CountHigherOrderCalls higher order calls
CF4D CountFunctionCalls calls to functions
CF4E CountCurrying calls that return a function
CF5 CountPatternMatching pattern match expressions
CF6 CountLazyValues references to lazy values
CF7 CountParameterLists additional parameter lists (e.g. two parameter lists is one

additional list)
CO1 CountVariables references to (mutable) variables
CO1A CountVariableDefinitions variables this method defines
CO1B CountInnerVariableAssignment assignments to variables defined within this method
CO1C CountOuterVariableUsage references to variables defined outside this method (in-

cluding assignments)
CO1D CountOuterVariableAssignment assignments to variables outside this method
CO2 CountSideEffects references to the Unit type
CO2B CountSideEffectCalls calls that return Unit
1Since the Unit type represents an empty return value, the methods or functions returning Unit rely on side-

effects instead.

37

CO2C CountSideEffectFunctions functions returning Unit

Table 5.2: Count construct measurements.

5.1.3 Fraction measurements
Fraction measurements calculate the number of lines in which a construct occurs in a method,
divided by the total number of lines of the method. Fraction measurements are not necessarily
affected by method size like the count measurements. The set of measures corresponds to the
count measures, except for measures that do not occur in the method body (e.g., parameter
lists).

Nr. Name Description: The fraction of lines containing ...

CF1 FractionRecursiveCalls recursive calls
CF3 FractionNestedMethods nested method definitions
CF4 FractionFunctions references to functions
CF4C FractionHigherOrderCalls higher order calls
CF4D FractionFunctionCalls calls to functions
CF4E FractionCurrying calls that return a function
CF5 FractionPatternMatching pattern match expressions
CF6 FractionLazyValues references to lazy values
CO1 FractionVariables references to (mutable) variables
CO1A FractionVariableDefinitions variable definitions
CO1B FractionInnerVariableAssignment assignments to variables defined within this method
CO1C FractionOuterVariableUsage references to variables defined outside this method (in-

cluding assignments)
CO1D FractionOuterVariableAssignment assignments to variables outside this method
CO2 FractionSideEffects references to the Unit type
CO2B FractionSideEffectCalls calls that return Unit
CO2C FractionSideEffectFunctions functions returning Unit

Table 5.3: Fraction construct measurements.

5.2 Paradigm score definitions
The paradigm score indicates whether a method is written in an imperative style (e.g., using
side-effects and mutable state) or a functional style (e.g. using compositions of functions). In
Scala, OOP constructs like classes and inheritance are used for encapsulation and are an inherent
part of the type system. This means that these constructs are used both when writing imperative
and functional style code. Since these constructs are always needed in Scala, they do not belong
to a certain style of code and are therefore not included in the paradigm score. Equation 5.1
shows how the paradigm score is calculated.

paradigm score =
functional score − imperative score
functional score + imperative score (5.1)

The functional score is the sum of all functional construct measurements. The imperative score
is the sum of all imperative construct measurements. The paradigm score is the ratio between
the functional score and the imperative score, with -1 being predominantly imperative and +1
being predominantly functional. The paradigm score is not balanced. This means that a score
of 0 does not necessarily indicate a 50/50 mix. Nonetheless, the score does give an indication of

38

how mixed the coding styles are and can be used to compare projects with each other.

Three paradigm scores have been defined, one for each category: ParadigmScoreBool, Paradigm-
ScoreCount and ParadigmScoreFraction. ParadigmScoreBool uses all boolean measurements to
calculate the functional and imperative scores. The other two paradigm scores do the same for
their category, except all excluded measures are covered by the boolean equivalent.

5.2.1 Comparison to Landkroon’s paradigm score
Landkroon has also defined a paradigm score [30]. This paradigm score is included in the mea-
surements under the name ParadigmScoreLandkroon. Landkroon’s paradigm score is calculated
using Equation 5.2.

paradigm score =
functional score

functional score + imperative score (5.2)

This yields a score between 0 and 1, with 0 being more imperative and 1 being more functional.
The paradigm score is not balanced, so a score of 0.5 does not necessarily represent a 50/50
mix. The measurements used to calculate the functional (prefixed with F) and the imperative
(prefixed with O) score can be found in Table 5.4.

Nr. Name Description Equivalent

F1 Recursive Whether the method is recursive BF1
F2 Nested Whether the method is nested BF2
F3 HigherOrder The number of higher-order parameters CF4B
F4 FunctionalCalls Counts the usage of foldLeft, foldRight, fold, map, filter,

count, exists, find and pattern match expressions
-

O1 SideEffects The number of references to (mutable) variables CO1
O2 ImperativeCalls Counts the usage of while, do-while and foreach -

Table 5.4: Landkroon paradigm score measurements.

The Equivalent column denotes which of our measurements are equivalent to Landkroon’s mea-
surements. F4 has no exact equivalent. The combination of CF4C (CountHigherOrderCalls) and
CF5 (CountPatternMatching) can be considered similar to F4. However, Landkroon counts a
predefined set of higher-order methods, whereas our measurement counts higher-order methods
based on their type signature.

1 def allPositive1(list: List[Int]): Boolean = list.forall(_ > 0)
2

3 def allPositive2(list: List[Int]): Boolean = {
4 var result = true
5 for (i <- list)
6 if (i <= 0)
7 result = false
8 result
9 }

Listing 5.1: Scala allPositive example.

This difference is illustrated by allPositive1 in Listing 5.1. Because the call to forall is a higher-
order method call, our measure includes it. Landkroon’s measure does not, since forall is not part

39

of the set of predefined methods. Another difference can be seen when looking at the paradigm
scores of allPositive2. This method earns imperative points in all paradigm score definitions.
However, Landkroon does not make a distinction between a method which earns imperative
points and a method without points. This means allPostive1 and allPositive2 both earn 0
points. We argue allPositive2 is more imperative and, therefore, there should be a distinction
between the two.

1 val list = ListBuffer[Int]()
2 def add(elem: Int): Unit =
3 list += elem

Listing 5.2: Scala side-effect example.

Measure O2 has no exact equivalent either. It is similar to CountSideEffects, which counts
occurrences of the Unit type. Since all predefined constructs in O2 return the Unit type these are
included in CountSideEffects. Ideally, everything with side-effects would be counted. However,
it is difficult to determine whether a call has side-effects, especially since this information for
external methods is often not available. Our approach is to assume that each method and
function that returns the Unit type has side-effects. Since the Unit type represents an empty
return value, the methods or functions returning Unit would be useless otherwise. Listing 5.2
contains the method add with a side-effect, where the += operation returns the Unit type.
Therefore, this method earns imperative points in our measurements, but it earns no imperative
points in Landkroon’s measurements. Because of the side-effects, we argue it should.

5.3 Results
The results consist of three parts. First, an overview of the available data per project is presented
and the paradigm scores are visualized. This gives an indication of the data available per project
and a rough overview of the style they are written in. Next, the fault-proneness prediction
performance of all measurements described in Section 5.1 have been analysed using regression
analysis. This gives an indication of how fault-prone each construct is. Finally, the fault-
proneness prediction performance of the paradigm score is evaluated.

5.3.1 Projects overview
Table 5.5 shows the amount of non-faulty and faulty methods available for each project. Briand’s
methodology gives an indication of the current project size, whereas Landkroon’s methodology
also takes faulty files of past version into account. As can be seen, Akka is by far the largest
project and has the most data available in terms of absolute numbers. Gitbucket is the smallest
project when using Briand’s methodology, but the amount of analyzed methods is closer to the
other projects when using Landkroon’s methodology. The amount of faults available for each
project differs significantly. When using Briand’s methodology Quill has the lowest percentage
of faulty methods (3.7%). However, when using Landkroon’s methodology, Quill has the highest
percentage of faulty methods (12.32%). When taking faulty files of past versions into account,
Quill’s non-faulty methods show the smallest relative increase, whereas the faulty methods show
the largest relative increase. This causes the large difference in the percentage of faulty methods
between methodologies. For Briand’s methodology, ZIO has the highest percentage of faulty
methods (11.87%). A large amount of data available or a high percentage of faulty code could
improve the fault-proneness prediction performance of the measured constructs.

40

Briand’s methodology Landkroon’s methodology
Project Non-faulty Faulty % faulty Non-faulty Faulty % faulty
Akka 17437 1228 6.58% 58755 2746 4.46%
Gitbucket 1006 97 8.79% 3093 181 5.53%
Http4s 3096 239 7.17% 4602 563 10.90%
Quill 2212 85 3.70% 2655 373 12.32%
Scio 2838 252 8.16% 7202 668 8.49%
Shapeless 3106 217 6.53% 7373 441 5.64%
ZIO 4341 585 11.87% 17803 1347 7.03%

Table 5.5: Available method data of analysed projects.

The paradigm scores of the analysed projects have been visualized to give an indication of the
style of code of each project. The paradigm score obtained with fraction measurements is used
for the visualizations, since it is the most fine-grained paradigm score. In this section, some
examples will be discussed. The full overview of all visualizations can be found in Appendix A.

In Figure 5.1, the paradigm scores of Akka are visualized using histograms. The left histogram
visualizes the paradigm scores of all methods and the right histogram the average paradigm
scores of all objects. Each of the bars indicates the number of occurrences of paradigm scores
between the left number (inclusive) and the right number (exclusive, except for the rightmost
bar). The leftmost bar indicates the number of methods or objects which earned no points at
all. These methods are often basic methods, for example, getters and setters, used in both im-
perative and functional style code. Therefore, we consider them as neutral. The bottom colour
of the histogram indicates the paradigm scores of code that contained faults according to the
fault-detection described in Section 4.3. The top colour indicates the paradigm score of code
that did not contain faults. The percentage above each bar indicates the percentage of scores
that are non-faulty.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

1000

2000

3000

4000

5000

6000

7000

8000

Oc
cu

rre
nc

es

97%

94%

84% 86% 84% 82% 87% 90% 89% 89%

92%

Akka methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

1400

1600

Oc
cu

rre
nc

es

94%

90%

77%
80% 79% 73% 76% 79%

80%
79%

90%

Akka objects

Figure 5.1: Akka paradigm score histogram.

In the case of Akka, most methods contain imperative or functional style code and methods
that contain a mix of both styles are less common. However, objects do often contain a mix of
both. Objects that contain a mix of both styles have a relatively higher number of faults than
objects which mostly contain a single style. There are a lot of methods and objects that earned
no points. Methods and objects that earned no points have a relatively low number of faults,
even though the absolute number of faults is higher than the other categories.

41

The paradigm scores of Gitbucket are visualized in Figure 5.2. As can be seen, Gitbucket mostly
uses functional style code. Out of all the analysed projects, Gitbucket has the relatively largest
amount of methods that contain a mix of imperative and functional style code. There are slightly
more methods that contain a mix of both styles than imperative style methods. Furthermore,
mixing styles within objects is common. For the Gitbucket project, there is no clear correlation
between the paradigm score and the percentage of faults, except that neutral methods are less
likely to contain faults.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

100

200

300

400

Oc
cu

rre
nc

es

99%

88%

80% 76%

91%

90% 83% 100%100% 71%

90%
Gitbucket methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

20

40

60

80

100

Oc
cu

rre
nc

es

96%

74%

67%

67% 69% 85% 73%

80%
71%

68%

77%

Gitbucket objects

Figure 5.2: Gitbucket paradigm score histogram.

The paradigm score distribution of Http4s and Quill is very similar and mostly consist of func-
tional style methods, with a few imperative style methods. The paradigm scores of Http4s are
visualized in Figure 5.3. As can be seen, only a very small amount of methods contains mixed
code. Mixed styles are slightly more common within objects, although most objects lean more
towards functional style code. Shapeless also has a similar paradigm score distribution, except
with an even stronger focus on functional style code and barely any imperative style code. Within
Shapeless, objects containing mixed styles seem more likely to contain faults. However, there
are not enough mixed style objects available to confirm this. For the other projects, there is no
clear correlation between the paradigm score and the percentage of faults.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

1400

1600

Oc
cu

rre
nc

es

97%

89%
95% 82% 90% 74% 88% 90% 75% 75%

90%

Http4s methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

50

100

150

200

250

300

350

400

Oc
cu

rre
nc

es

95%

93% 74% 87% 89% 82%
78%

85%
82% 77%

80%

Http4s objects

Figure 5.3: Http4s paradigm score histogram.

42

In Figure 5.4 the paradigm scores of Scio are visualized. Scio consists of mostly imperative and
functional style methods and a mix of both styles within a method is uncommon. There are
around twice as many functional style methods to imperative style methods. Although mixing
styles within methods is uncommon, mixing styles within objects is common. Scio methods and
objects that contain mostly functional style code with a little bit of imperative style code are
slightly more likely to contain faults than other methods and objects.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

Oc
cu

rre
nc

es

95%

92%

83% 94% 93% 91% 87% 94% 75% 72%

92%

Scio methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

50

100

150

200

250

300

Oc
cu

rre
nc

es

93%

86%

81%

92%
88%

85%
78% 81%

74%

73%

82%

Scio objects

Figure 5.4: Scio paradigm score histogram.

The paradigm scores of ZIO are visualized in Figure 5.5. As can be seen, ZIO mostly has
functional style methods with a small amount of imperative style methods. Mixing styles is not
very common within methods, but is quite common within objects. However, there is still a
large amount of objects that purely contain functional style code. Within ZIO, functional style
methods are more likely to contain faults than other methods, although this does not hold for
objects. Similar to Scio, objects that contain mostly functional style code with a little bit of
imperative style code are slightly more likely to contain faults.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

500

1000

1500

2000

2500

Oc
cu

rre
nc

es

94%

98%

100% 98% 93% 91% 99% 96% 95% 92%

85%
ZIO methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

25

50

75

100

125

150

175

Oc
cu

rre
nc

es

93%

91%
96%

100%

97% 90%
85%

90%
83% 79%

91%
ZIO objects

Figure 5.5: ZIO paradigm score histogram.

43

5.3.2 Construct measurement results
A summary of the construct measurement results can be found in Table 5.6. The results have
been sorted by precision, which indicates the chances of a method being faulty if the measure-
ment predicts it as faulty. The recall indicates the chances of a faulty method being predicted
as faulty. The MCC is a measure of the overall performance. In this case, the goal is not to find
a single measure that is able to detect every faulty method in the project. Instead, the goal is
to find a measure that when it predicts a method is faulty, it is correct. This indicates that the
measure is a reliable way to find (additional) faults and could potentially improve the baseline
model. For each combination of category and methodology, the top 5 measures are shown in the
table. The full overview can be found in Appendix B.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Boolean construct measurements (Briand)

HasOuterVariableUsage 18.19 15.09 48.34 48.41 0.063 0.040
HasVariables 17.95 8.20 22.86 34.43 0.070 0.042
HasVariableDefinitions 17.64 7.26 17.90 35.76 0.045 0.025
HasSideEffectFunctions 17.26 11.61 23.70 31.94 0.049 0.069
HasInnerVariableAssignment 16.64 6.85 18.34 35.55 0.047 0.028

Count construct measurements (Briand)
CountOuterVariableUsage 18.19 15.09 48.34 48.41 0.063 0.040
CountVariables 17.95 8.20 22.86 34.43 0.070 0.042
CountVariableDefinitions 16.48 8.25 18.87 35.40 0.038 0.032
CountInnerVariableAssignment 16.46 7.00 7.06 6.03 0.039 0.037
CountSideEffectFunctions 16.20 12.18 20.81 30.86 0.045 0.071

Fractional construct measurements (Briand)
FractionSideEffectFunctions 17.41 11.80 33.56 42.19 0.050 0.068
FractionOuterVariableUsage 16.49 15.49 60.88 47.19 0.044 0.059
FractionSideEffectCalls 14.92 2.88 31.02 31.00 0.094 0.028
FractionPatternMatching 14.84 4.44 29.01 7.60 0.112 0.044
FractionVariableDefinitions 14.64 8.40 30.79 42.55 0.027 0.040

Boolean construct measurements (Landkroon)
HasPatternMatching 15.16 7.66 36.14 9.84 0.125 0.088
HasNestedMethods 14.88 8.49 13.80 6.40 0.065 0.045
HasVariableDefinitions 14.59 10.44 26.44 40.47 0.028 0.032
HasLazyValues 14.20 5.75 19.50 36.04 0.032 0.024
HasSideEffectFunctions 14.00 4.54 20.46 35.55 0.044 0.043

Count construct measurements (Landkroon)
CountNestedMethods 14.88 8.49 13.80 6.40 0.065 0.045
CountPatternMatching 14.82 7.79 37.56 9.80 0.117 0.100
CountSideEffectFunctions 14.00 4.54 20.46 35.55 0.044 0.043
CountLazyValues 13.32 6.60 19.42 35.68 0.029 0.027
CountOuterVariableUsage 13.18 6.75 38.03 43.15 0.042 0.038

Fractional construct measurements (Landkroon)
FractionNestedMethods 14.78 8.72 25.29 29.59 0.062 0.050
FractionSideEffectFunctions 14.00 4.56 20.39 35.57 0.043 0.043
FractionPatternMatching 13.75 5.53 30.95 7.04 0.098 0.055
FractionVariableDefinitions 12.66 10.22 56.85 49.10 0.019 0.038
FractionInnerVariableAssignment 10.67 7.56 56.41 42.82 0.011 0.035

Table 5.6: Construct measurements prediction performance summary.

For Briand’s methodology, one of the top-performing measures is outer variable usage, which
measures the usage of variables that have been defined outside the scope of the method. This

44

measure has a very high standard deviation. The recall of this measure is also highly project-
dependent, so how well this measure performs depends on the project. The other variable
measures also perform well and have a lower standard deviation. Finally, the side-effect func-
tions measure, especially the one that measures the fraction of lines containing functions with
side-effects, also performs relatively well.

For Landkroon’s methodology, the results are quite different. In al three measurement cate-
gories, pattern matching is the best performing measure when considering both precision and
recall. Nested methods and side-effect functions also belong to the top predictors.

The overall performance of the measurements as predictors for fault-proneness is not that good
with the highest MCC score being 0.155 for Briand (FunctionalScoreCount) and 0.125 for Land-
kroon (HasPatternMatching). However, if a language construct would consistently cause faults,
it would likely be seen as a flaw of the language and potentially be removed. Still, some of
the constructs are somewhat indicative for faults whereas others are much less indicative. The
differences between the categories of measurements are small and there are no measurements
that perform significantly better in a single category.

5.3.3 Paradigm score results
The results for the paradigm scores can be found in Table 5.7. The differences between the
paradigm scores are small. Our paradigm scores have a precision around 10% and a recall
around 60%. The imperative and functional score better with a higher MCC. The imperative
score has the highest precision, but the lowest recall. Landkroon’s paradigm score has a higher
precision overall, but a lower recall. None of the scores are a good predictor for fault-proneness.

5.4 Conclusion
The results presented in Section 5.3 brings us to the following answers to he research questions:

RQ1 Which, if any, OOP or FP constructs in Scala are significantly more fault-prone than
others?

Within Scala, OOP constructs that are not imperative can be considered neutral.
The program logic in Scala is implemented using imperative and/or functional con-
structs. Within these imperative and functional constructs, there is not a single set of
constructs that is significantly more fault-prone than others. However, there is still a
difference between constructs. The most fault-prone constructs are (outer) variable us-
age, variable definitions, inner variable assignments, functions with side-effects, nested
methods and pattern matching.

RQ2 How well does the paradigm score perform as a predictor for fault-proneness?

The paradigm score on its own does not perform well as a predictor for fault-proneness.
The precision of the different paradigm scores was around 10% and the recall around
60%.

45

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Briand’s methodology

ParadigmScoreBool 9.70 4.23 59.01 10.32 0.067 0.076
ImperativeScoreBool 14.36 3.72 39.58 26.79 0.106 0.012
FunctionalScoreBool 13.44 3.18 52.97 7.71 0.143 0.023

ParadigmScoreCount 10.13 3.77 58.83 13.52 0.087 0.053
ImperativeScoreCount 15.94 3.20 35.90 27.17 0.121 0.024
FunctionalScoreCount 14.76 3.87 47.53 6.84 0.155 0.032

ParadigmScoreFraction 10.09 4.09 64.10 11.42 0.084 0.079
ImperativeScoreFraction 11.70 3.04 36.82 25.92 0.077 0.040
FunctionalScoreFraction 11.69 3.35 55.36 5.25 0.115 0.028

ParadigmScoreLandkroon 13.11 3.37 50.82 12.94 0.132 0.025
ImperativeScoreLandkroon 14.65 4.71 23.32 31.60 0.062 0.052
FunctionalScoreLandkroon 13.93 3.03 44.86 8.11 0.137 0.021

Landkroon’s methodology
ParadigmScoreBool 9.79 4.74 59.45 9.28 0.062 0.065
ImperativeScoreBool 11.06 4.59 45.89 28.77 0.052 0.051
FunctionalScoreBool 11.71 4.69 54.23 10.19 0.106 0.049

ParadigmScoreCount 10.05 4.35 59.88 9.75 0.075 0.047
ImperativeScoreCount 12.13 4.26 34.17 28.82 0.064 0.053
FunctionalScoreCount 12.25 4.82 40.17 8.78 0.097 0.071

ParadigmScoreFraction 10.11 4.99 62.60 10.15 0.075 0.072
ImperativeScoreFraction 9.57 4.34 66.26 28.96 0.026 0.063
FunctionalScoreFraction 10.97 4.25 52.64 6.53 0.091 0.041

ParadigmScoreLandkroon 11.59 4.36 48.34 10.46 0.093 0.064
ImperativeScoreLandkroon 11.92 5.79 29.63 32.02 0.048 0.052
FunctionalScoreLandkroon 12.29 3.71 44.14 7.56 0.103 0.064

Table 5.7: Paradigm scores prediction performance.

46

Chapter 6

Baseline model

This chapter introduces the model that serves as a baseline for fault-proneness prediction per-
formance. Section 6.1 defines the baseline model and its metrics. Section 6.2 evaluates the
fault-proneness prediction performance of the baseline model. Section 6.3 assesses whether the
performance of the baseline metrics is affected by the paradigm score. Finally, Section 6.4
concludes this chapter by answering RQ3.

6.1 Baseline model definition
The baseline model has been defined to ensure the researched MP metrics offer an improve-
ment over the existing metrics. The baseline model consists of commonly used OOP and FP
metrics. To ensure the researched MP metrics are an improvement over existing metrics, the
fault-proneness prediction performance of the baseline model combined with one or more MP
metrics should be significantly better than fault-proneness prediction performance of the baseline
model on its own. This section defines the baseline model and its metrics.

6.1.1 General metrics
The general metrics are commonly used metrics related to the lines of code and not tailored to
a specific paradigm. This section describes the general metrics used within the baseline model.

Lines of Code (LOC)

The Lines of Code is the total number of lines of a class, including empty lines and comments.
The assumption is the larger the class, the more complex and the more likely it is to contain
faults. This does not take into account the complexity of the code itself, but does yield a general
indication.

Source Lines of Code (SLOC)

The Source Lines of Code is the total number of lines of a class, excluding blank and comment
lines. The complexity of a class is usually related to the code and not to the white space and
comments. Therefore, this metric usually gives a more accurate representation of the complexity
of the class.

47

Comment Lines of Code (CLOC)

The Comment Lines of Code is the total number of comment lines of a class. The assumption is
the more comments are needed to explain a class (relative to the other classes), the more complex
the code is.

Comment Density (CD)

The Comment Density is the ratio of comment lines to source code lines. CD can be used as
an indicator for software quality [2]. Using Equation 6.1, the value will be 1 if all the lines are
comments and 0 if all the lines are source code.

CD =
CLOC

CLOC + SLOC
(6.1)

6.1.2 OOP metrics
The OOP metric suite used for the baseline model is defined by Chidamber and Kemerer [11].
This metric suite is often validated and cited in the field of OOP metrics. Some of the metrics
have been superseded by newer alternatives. This section describes which metrics are used in
the baseline model.

Cyclomatic Complexity (CC)

Cyclomatic complexity, also known as McCabe complexity, indicates the complexity of a piece
of code by measuring the number of linearly independent paths through the source code [31].
The cyclomatic complexity is computed by transforming the program to a control flow graph
with N being the number of nodes and E being the number of edges. The cyclomatic com-
plexity for a single program is E −N + 2. The idea is the more complex a piece of code is, the
more fault-prone it is. In the baseline model, the cyclomatic complexity is calculated per method.

A disadvantage of the cyclomatic complexity is that it does not always translate well to programs
written in a functional style. This is demonstrated by the two methods shown in Listing 6.1.
Here the complexity of the second method is abstracted to the higher-order methods and the
cyclomatic complexity becomes 1. However, the behaviour of the code is still just as complex as
the first method.

1 // Cyclomatic complexity: 3
2 for (i <- list) {
3 if (i > 0) {
4 println(i)
5 }
6 }
7

8 // Cyclomatic complexity: 1
9 list.filter(_ > 0).foreach(println)

Listing 6.1: Scala cyclomatic complexity example.

48

Weighted Methods per Class (WMC)

The Weighted Methods per Class is the number of methods of a class, weighted by the complexity
of the methods. It is calculated by summing the complexity of the methods in the class [11]. If
all methods are considered equally complex, the WMC is the number of methods of the class [4].
The definition by Chidamber and Kemerer does not explicitly define how the complexity should
be computed, but suggests the Cyclomatic Complexity as measure. In the baseline metric suite,
we used Cyclomatic Complexity. The assumption is the larger and more complex a class, the
more fault-prone.

Depth of Inheritance Tree (DIT)

The Depth of Inheritance is the distance to the root class in the inheritance tree [11]. The
assumption is the deeper the class is in the inheritance tree, the more definitions the class has
inherited from ancestors, and thus the more fault-prone the class is [4].

Number of Children (NOC)

The Number of Children is the number of direct descendants the class has in the inheritance tree
[11]. The assumption is the more direct descendants a class has, the more difficult it would be
to modify, and therefore that the class would be more fault-prone [4].

Coupling Between Objects (CBO)

Objects are considered coupled when they use instances, variables or methods of another object.
The Coupling Between Objects is the number of other objects to which an object is coupled [11].
The CBO can be split up in outgoing coupling (fan-out) and ingoing coupling (fan-in) [32]. This
gives a more fine-grained result. In the baseline model, both CBO and fan-in/out are included.
The assumption is that highly coupled objects are more fault-prone, due to inter-object activities
[4]. Highly coupled objects can also indicate a weakness in module encapsulation [48].

Response for a Class (RFC)

The Response for a Class is the number of methods that can be invoked as a response to a
message received by a class [11]. This includes methods that are called by methods of this class.
The RFC is calculated using Equation 6.2.

RFC = M ∪ {∀x ∈ M | Rx} (6.2)

Where M is the set of methods of the class and Rx the set of methods called by method x.

Lack of Cohesion in Methods (LCOM)

Lack of Cohesion in Methods measures the (lack of) cohesion of a class. If a class is incohesive,
it should be split up into multiple classes. Hitz and Montazeri have demonstrated that the theo-
retical definition of LCOM by Chidamber and Kemerer is inadequate [21]. It is possible to have
non-cohesive methods and still attain an LCOM score of 0 (0 means the methods are cohesive).
There are several other LCOM definitions. The most well known are the two definitions by
Henderson-Sellers, Constantine, and Graham [20] and the definition by Hitz and Montazeri [22].

In the baseline model, we used the LCOM by Hitz and Montazeri, since it is the most commonly
used LCOM metric. This definition consists of counting the number of connected components of

49

a class. A connected component consists of related class methods. Methods are related if they
both use the same class-level variable or one of the methods calls the other method. If a class
has multiple connected components, it can likely be split up into multiple classes.

6.1.3 FP metrics
The FP metrics for the baseline model are based on the work of Ryder and Thompson [37, 38].
Some of these metrics have been validated for Scala by Landkroon [30]. The FP metrics used in
the baseline model are described below.

Pattern Size (PSIZ)

The pattern size measures the size of the pattern [38]. This is based on Haskell, where every
function is a pattern. In Scala, there are two types of constructs that could be considered
patterns: pattern matching and method overloading. For the baseline model, we have opted to
only consider pattern matching. The pattern size is based on the number of AST nodes in the
pattern.

Number of Pattern Variables (NPVS)

The number of pattern variables measures the number of variables in the pattern [38]. In our
case, this becomes the number of variables bound in a match expression. The assumption is that
the more variables are introduced, the more fault-prone the code is.

Depth of Nesting (DON)

The depth of nesting measures the maximum depth of the AST in a pattern [38]. The assumption
is the higher the depth, the more complex the code, and therefore the more fault-prone it is.

Outdegree (OUTD)

The outdegree measures the number of methods called by the method [38]. There are two
variants: the total number of methods and the number of unique methods. The assumption is
that the higher the outdegree, the more likely a method is affected by changes in other methods,
the more fault-prone it is.

6.2 Baseline performance
The fault-proneness prediction performance of the baseline model has been measured on the
projects described in Section 5.3.1. The measurements have been done on an object-by-object
basis. The method-based metrics have been summarised per object. This has been done using
three different summarising strategies: the average, the sum and the maximum of all method
metrics.

The results for the multivariate regression, which uses all metrics, have been collected for each
summarising strategy. For the univariate regression, the results of the object-based metrics have
been collected once and the results of the method-based metrics have been collected for each
summarising strategy. The results for the baseline model using Briand’s methodology can be
found in Table 6.1 and using Landkroon’s methodology in Table 6.2.

50

Overall, the baseline model scores fairly well with a precision around 31%, recall around 61% and
MCC around 0.34 for Briand’s methodology, and a precision around 42%, recall around 63% and
MCC around 0.41 for Landkroon’s methodology. However, there is still room for improvement.
Of each summarising strategy, the sum of the method metrics performs the best. The depth of
the inheritance tree, number of children, and fan-in metrics do not perform well on the selected
projects.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression

Method average 31.32 8.01 62.71 7.63 0.347 0.060
Method sum 31.34 8.00 62.23 7.64 0.346 0.066
Method max 31.34 7.68 61.90 7.50 0.346 0.058

Object metrics
LinesOfCode 34.71 10.56 53.37 6.25 0.342 0.077
SourceLinesOfCode 33.78 10.62 52.69 7.00 0.331 0.080
CommentLinesOfCode 33.15 11.81 33.80 11.06 0.254 0.105
CommentDensity 24.80 10.59 45.54 19.24 0.185 0.113
WeightedMethodsPerClass 30.39 8.91 49.37 6.22 0.291 0.069
DepthOfInheritanceTree 12.11 4.04 60.02 14.05 0.051 0.090
NumberOfChildren 13.43 5.33 34.61 23.87 0.042 0.045
CouplingBetweenObjects 28.62 8.57 57.99 4.83 0.303 0.074
FanIn 14.50 4.07 34.18 18.24 0.069 0.036
FanOut 31.29 8.52 60.57 5.46 0.339 0.073
ResponseForClass 30.85 7.92 56.36 3.31 0.320 0.051
LackOfCohesionInMethods 20.13 8.77 43.08 16.28 0.160 0.110

Method metrics average
CyclomaticComplexity 25.28 8.94 50.47 10.47 0.244 0.100
PatternSize 27.31 13.37 32.51 9.60 0.201 0.122
NumberOfPatternVariables 28.42 13.31 32.51 7.99 0.208 0.112
OutDegree 24.26 9.90 50.62 6.31 0.232 0.096
OutDegreeDistinct 22.81 9.03 57.11 4.92 0.232 0.086
DepthOfNesting 28.46 12.15 37.42 7.50 0.229 0.099

Method metrics sum
CyclomaticComplexity 30.51 8.75 49.82 5.58 0.293 0.065
PatternSize 32.38 12.58 36.36 9.17 0.259 0.107
NumberOfPatternVariables 33.36 12.35 36.19 8.07 0.265 0.099
OutDegree 32.72 11.06 47.66 7.50 0.306 0.092
OutDegreeDistinct 30.98 10.15 52.29 3.88 0.305 0.076
DepthOfNesting 32.00 11.90 40.50 9.58 0.273 0.105

Method metrics max
CyclomaticComplexity 27.85 10.11 48.84 8.37 0.264 0.095
PatternSize 29.59 11.81 39.69 8.78 0.250 0.105
NumberOfPatternVariables 30.59 11.69 39.19 10.09 0.257 0.107
OutDegree 28.72 11.31 50.19 9.09 0.278 0.108
OutDegreeDistinct 25.22 10.48 54.72 7.15 0.253 0.100
DepthOfNesting 30.12 11.58 44.89 9.74 0.270 0.098

Table 6.1: Baseline model fault-proneness prediction performance (Briand).

51

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression

Method average 41.09 15.75 64.30 10.09 0.410 0.146
Method sum 42.34 15.63 62.62 9.55 0.415 0.136
Method max 41.43 15.90 63.74 9.63 0.411 0.144

Object metrics
LinesOfCode 47.39 13.73 53.66 13.30 0.416 0.126
SourceLinesOfCode 46.51 15.03 53.70 12.66 0.410 0.133
CommentLinesOfCode 45.90 19.85 47.35 20.55 0.321 0.194
CommentDensity 34.11 13.49 50.21 19.32 0.252 0.159
WeightedMethodsPerClass 40.49 13.74 48.96 11.33 0.341 0.128
DepthOfInheritanceTree 17.78 6.09 62.72 9.64 0.107 0.050
NumberOfChildren 21.34 8.84 42.68 28.21 0.090 0.085
CouplingBetweenObjects 38.59 12.63 54.62 11.16 0.346 0.119
FanIn 21.83 8.41 40.64 24.83 0.100 0.077
FanOut 40.69 12.41 57.77 11.07 0.378 0.101
ResponseForClass 41.37 12.55 53.79 11.51 0.371 0.124
LackOfCohesionInMethods 30.43 14.97 48.65 13.98 0.234 0.144

Method metrics average
CyclomaticComplexity 30.26 11.33 53.71 11.85 0.269 0.115
PatternSize 31.68 11.38 34.53 10.35 0.216 0.113
NumberOfPatternVariables 33.57 12.43 35.91 8.86 0.235 0.108
OutDegree 32.41 11.98 52.77 8.78 0.286 0.113
OutDegreeDistinct 28.34 9.02 58.14 7.35 0.261 0.079
DepthOfNesting 34.46 12.81 41.07 9.66 0.263 0.115

Method metrics sum
CyclomaticComplexity 40.49 13.66 48.90 11.25 0.341 0.128
PatternSize 40.90 11.27 39.47 11.03 0.308 0.112
NumberOfPatternVariables 39.05 12.64 40.77 11.76 0.299 0.126
OutDegree 43.62 12.97 48.83 12.05 0.368 0.124
OutDegreeDistinct 41.33 12.64 51.04 11.68 0.358 0.122
DepthOfNesting 38.13 12.63 46.71 11.70 0.316 0.127

Method metrics max
CyclomaticComplexity 34.18 12.07 52.15 11.32 0.301 0.117
PatternSize 36.95 11.55 44.32 12.18 0.298 0.124
NumberOfPatternVariables 36.88 14.05 42.72 9.81 0.287 0.127
OutDegree 37.37 13.77 50.16 11.46 0.323 0.132
OutDegreeDistinct 32.79 11.84 55.05 7.91 0.296 0.108
DepthOfNesting 35.82 12.20 49.94 10.48 0.309 0.121

Table 6.2: Baseline model fault-proneness prediction performance (Landkroon).

6.3 Metric performance by paradigm
To determine to what extent the baseline model metrics are affected by the mix of OOP and
FP, the code was split up into four categories based on the paradigm score: OOP, FP, Mix
of OOP and FP, and Neutral. All objects that did not earn any paradigm score points were
considered neutral. Of the objects that did earn points, objects with a paradigm score below or
equal to -0.8 were considered OOP, above or equal to 0.8 were considered FP, and objects with
a paradigm score in between were considered mixed. This has been done for each project. Some
projects had less than 10 faulty objects in one of the categories, usually the OOP category. Due
to the low number of faulty cases, individual instances would have a large effect on the prediction
performance causing it to be unreliable. Additionally, when using 10-fold cross-validation it is

52

not possible to have a faulty object in each split. Therefore, these projects have been excluded
from the results. To keep the comparison between paradigms fair, these projects have also been
excluded from the categories for which they did have enough results.

For each split, the average MCC per metric has been plotted in a barchart. This measure
returns a value between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 no
better than random prediction and −1 indicates total disagreement between prediction and ob-
servation. A barchart has been plotted for each methodology and summarising strategy. For
each methodology, the barchart with the best overall scoring summarising strategy is discussed.
The complete overview can be found in Appendix C.

For Briand’s methodology, the sum summarising strategy has the best overall performance. All
7 projects had enough data in the Neutral, FP and mixed categories. However, only Akka and
Scio had enough data in the OOP category. This means that the results used for the comparison
are only based on two projects and, therefore, less reliable. A reason for the low amount of OOP
objects could be that Scala is often chosen over more traditional languages if FP features are
desired. Furthermore, the compiler often translates OOP constructs to functional variants and
the Scala standard library promotes a functional programming style. For example, the standard
collections in Scala are immutable and use higher-order methods to use or transform the data.
The percentage of objects that contain faults per paradigm is shown in Table 6.3. Neutral objects
are the most common and are less likely to be faulty. OOP and FP objects are the least common
and are more likely to be faulty. Mixed objects are more common than OOP and FP objects
and are the most likely to be faulty. This could be related to source lines of code since neutral
objects are often shorter and mixed objects are often longer. Another explanation could be that
it is more likely mixed objects are dealing with multiple concerns.

Paradigm Relative size Faulty% mean Faulty% std. SLOC mean SLOC std.
Neutral 60.14% 6.12% 1.51% 7.83 1.58
OOP 6.36% 13.54% 3.34% 19.41 3.95
FP 8.81% 16.26% 7.97% 35.46 24.92
Mix 24.70% 26.16% 4.39% 51.89 13.77

Table 6.3: Average percentage of faulty objects and average SLOC per paradigm using Briand’s
methodology.

The average MCC per metric for Briand’s methodology can be found in Figure 6.1. The All
category represents the performance of the metric without splitting by paradigm. Most metrics
perform worse on neutral objects compared to the other paradigms, with the exception of com-
ment based metrics. The best performing metrics for neutral objects are the metrics related to
the lines of code, with LOC being the most indicative metric.

Most metrics perform worse on OOP-style objects compared to FP or mixed objects. Metrics
that score significantly worse include cyclomatic complexity, (source) lines of code, outdegree
(distinct), response for class, and weighted method count. This is surprising since cyclomatic
complexity, response for class, and weighted method count are OOP metrics. The cyclomatic
complexity is measured per method and the sum of the methods is used to calculate the score per
object. This makes cyclomatic complexity identical to the weighted method count. The cyclo-

53

matic complexity metric performs significantly better for OOP and worse for FP when using the
maximum per object instead of the sum. The lack of cohesion in methods metric scores well in the
OOP category. However, it does not perform well in the other categories. The most indicative
metrics for OOP-style objects are the coupling between objects and the fan-out metrics.

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectSumResultsBriand
All
Neutral
OOP
FP
Mixed

Figure 6.1: Baseline model metrics average MCC per paradigm using Briand’s methodology.

Most metrics perform well on FP-style objects, including OOP metrics. Coupling-based OOP
metrics like coupling between objects, fan-out, and response for class are the most indicative for
finding faults. This could be because Scala uses OOP constructs for encapsulation even when
writing FP-style code. The general and FP metrics also perform well on FP-style objects, with
the exception of comment density. Complexity-based OOP metrics perform fairly well, whereas
inheritance- or cohesion-based OOP metrics do not.

The mixed category has the most consistent performance. This could be because the base-
line model contains separate metrics for both paradigms, but also because the mixed category
had more faulty data available compared to the other categories. The most indicative metrics
are the coupling between objects, fan-out, (source) lines of code, and outdegree. The weighted
method count (and therefore cyclomatic complexity) and the depth of nesting perform signifi-
cantly better for mixed objects compared to the other categories.

When comparing the performance without splitting by paradigm with the performance for each
category, the response for class metric shows a significant improvement when only considering
FP-style code. Most other metrics show either no or only small performance improvements. Some
metrics that score poorly overall did show improvements when only considering a single paradigm,
however, even with the improvements these metrics still performed poorly. Interestingly, when
considering metrics with an MCC above 0.2 the only category which shows performance improve-
ments over not splitting by paradigm is the FP category.

For Landkroon’s methodology, the sum summarising strategy also yields the best overall perfor-
mance. For Landkroon’s methodology, only Akka, Gitbucket and Scio had enough data in the
OOP category. This means the results used for the comparison are based on these three projects.
The percentage of objects that contain faults per paradigm is shown in Table 6.4. Compared

54

to Briand’s methodology, neutral objects are slightly less common and less likely to be faulty,
OOP objects are slightly more common, FP objects are both more common and more likely to
be faulty, and mixed objects are also more likely to be faulty. In addition, each category has a
higher SLOC, but the differences between categories are similar.

Paradigm Relative size Faulty% mean Faulty% std. SLOC mean SLOC std.
Neutral 58.01% 4.61% 1.70% 9.21 2.65
OOP 7.35% 13.52% 7.54% 27.58 14.43
FP 10.06% 21.29% 10.83% 50.49 31.44
Mix 24.58% 34.09% 13.42% 66.77 27.55

Table 6.4: Average percentage of faulty objects and average SLOC per paradigm using Land-
kroon’s methodology.

The average MCC per metric for Landkroon’s methodology can be found in Figure 6.2. The
results for the neutral category are similar to using Briand’s methodology, although the overall
scores have slightly improved. For all other categories, the performance of the general metrics,
especially the comment metrics, has significantly increased. The metric most indicative for faults
in every category is the (source) lines of code. For OOP metrics, the performance of the cyclo-
matic complexity, fan-out, and weighted method count metrics has also improved significantly.
For the FP category, the performance of the depth of inheritance and lack of cohesion in methods
has significantly increased, whereas these metrics performed poorly when using Briand’s method-
ology. For the mixed category, the performance of the cyclomatic complexity, fan-out, lack of
cohesion in methods, outdegree (distinct), response for class, and weighted method metrics count
have all significantly improved. When using Landkroon’s methodology none of the metrics with
an MCC above 0.2 show significant performance improvements when splitting by paradigm.

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectSumResultsLandkroon
All
Neutral
OOP
FP
Mixed

Figure 6.2: Baseline model metrics average MCC per paradigm using Landkroon’s methodology.

55

6.4 Conclusion
The results presented in Section 6.3 brings us to the following answers to the research questions:

RQ3 To what extent is the fault-proneness prediction ability of existing OOP and FP metrics
affected by the mix of OOP and FP within a class or method?

The results are slightly less reliable because most projects did not have enough OOP
data available. The general metrics perform well on every category, especially when
using Landkroon’s methodology. Surprisingly enough, most OOP metrics perform
better on the FP and mixed categories than in the OOP category. Especially the
response for class and, when using Briand’s methodology, the weighted method count
perform significantly worse for the OOP category compared to the FP and mixed
categories. When using Briand’s methodology the lack of cohesion of methods metric
only performs well in the OOP category. However, this effect does not occur when
using Landkroon’s methodology. The FP metrics perform well in the FP and mixed
categories. Most FP metrics also perform fairly well in the OOP category, with
the exception of outdegree distinct. Overall, there are not many metrics which only
perform well on a certain category or show a significant improvement compared to their
performance without splitting by paradigm. An interesting effect that was observed
when splitting the code by paradigm was that mixed code had a significantly higher
percentage of faults in the analysed projects.

56

Chapter 7

Metrics tailored to OOP and FP
This Chapter introduces and analyses candidate metrics for Scala tailored to the combination of
OOP and FP. Section 7.1 presents the candidate metrics. The results are presented in Section
7.2. Finally, Section 7.3 concludes this chapter by answering RQ4.

7.1 Candidate metrics
This section defines the candidate metrics that will be analysed. The candidate metrics were
defined based on the following sources:

1. The metrics for the functional side of C# by Zuilhof [53].

2. The OOP or FP constructs that are significantly more fault-prone.

3. The existing OOP and FP metrics that are significantly affected by the mix of OOP and
FP.

The first source has resulted in several metric definitions aimed at the use of lambdas. These
metrics are defined in Section 7.1.1. The second source has resulted in several metrics definitions
measuring specific Scala constructs. These metrics are defined in Section 7.1.2. The last source
has not resulted in any metrics, because none of the analysed existing OOP and FP metrics
showed an MCC increase high enough to improve the baseline model when only considering a
single paradigm.

7.1.1 Zuilhof’s metrics
Zuilhof has defined MP metrics for the functional side of C# [53]. Most of these metrics can also
be applied to Scala, with the exception of the unterminated collection queries metric since Scala
collection queries are always terminated. This section describes the metrics defined by Zuilhof
which are applicable to Scala.

Number of Lambda Functions Used in a Class

Counts the number of lambda functions used in a class. Lambda functions could introduce
constructs which are harder to understand, therefore make the code more fault-prone.

Source Lines of Lambda

Counts the number of lines containing lambda functions. More lines spent on lambda functions
could indicate more complicated lambdas, making them more fault-prone.

57

Lambda Score

The lambda score is the ratio of lines containing lambda functions to the number of source code
lines. This metric indicates the relative amount of code spent on lambda functions, which in
turn tells us something about the style the class is written in.

Number of Lambda Functions Using Outer Variables

Counts the number of lambda functions using variables defined outside the method scope. The
usage of these variables could cause the behaviour of the lambda to change, which would increase
the fault-proneness.

Number of Lambda Functions Using Local Variables

Counts the number of lambda functions using variables defined inside the method scope (but
outside the lambda itself). The usage of these variables could cause the behaviour of the lambda
to change, which could increase the fault-proneness.

Number of Lambda Functions With Side-Effects

Counts the number of lambda functions using side-effects. The usage of side-effects means the
lambdas are not pure. This could cause issues if higher-order methods assume the functions
are pure and thus increase the fault-proneness. In this case, side-effects can also include print
statements, which are less likely to cause problems since they are generally not related to the
behaviour of the code.

Number of Lambda Functions With Assignments

Counts the number of lambda functions using assignments. The usage of assignments means
the lambda directly modifies variables. This could cause issues if higher-order methods assume
the functions are pure and thus increase the fault-proneness. Assigning a variable is also an
indication the lambda relies on the execution order. The execution order of lambda functions is
not necessarily guaranteed, for example, parallel collections assume lambdas are pure and can
be applied to the collection elements in any order.

7.1.2 Construct metrics
Based on the construct analysis (Section 2.2.7 and the construct measurements (Section 5.1
candidate metrics can be defined. This sections describes the candidate metrics that have been
defined.

Number of implicits

Implicits in Scala are confusing to (new) programmers and hard to debug due to their implicit
nature. Implicits are used by the compiler based on whether they are in scope. This means a
single import could (unexpectedly) change the behaviour of the program. The measurements of
implicits are split-up into three categories: definitions, conversions and parameters. Definitions
are implicits defined within the code, conversions are when the type of a value is automatically
converted to another type by the compiler, and parameters are when using a method with an
implicit parameter that has to be filled in.

58

Number of Unit variables

Everything in Scala is an expression. Therefore, even statements, methods and functions that
do not have a return value, should return a valid object. For this purpose, Scala uses the Unit
type, which always is an empty object. Variables that have the Unit type were likely supposed
to have another type, but got assigned an expression which returns the Unit type instead. This
metric counts the number of unit variables.

Number of Function variables

Functions in Scala are often used anonymously as lambda functions. Since methods can auto-
matically be converted to functions, they are often used instead of a function when a named
function is desired. However, it is possible to assign a function to a variable and use the variable
instead of a method. This metric counts the number of function variables.

Number of nulls

The official Scala book recommends to avoid null and use the Option type instead to avoid null
pointers [1]. However, to stay compatible with Java, null is allowed. Since Scala code often does
not expect null values, the usage of null could cause issues, even more so than it does in Java.
This metric counts the number of times null is used in the code.

Number of returns

In Scala, returns are unnecessary since methods are defined using expressions, which already
have a return value by definition. Additionally, when using return within a nested function
it is implemented using a special exception that is caught. This means that non-local returns
are possible, although they often cause unexpected results. Furthermore, the exception can be
caught when catching runtime exceptions, which could also lead to unexpected behaviour.

Pattern variable name shadowing

In pattern-matching it is easy to shadow a variable name and create a new variable, when the
intention was to match based on the value of the old variable. An example of this is shown
in Listing 7.1. The shadowing of a variable could be accidental and, therefore, cause code to
be faulty. This metric counts the number of pattern variables that shadow the names of outer
variables.

1 def matchString(string: String) = {
2 val First = "first"
3 val second = "second"
4 string match {
5 // Matches if string has the value "first", only works for capitalized variables
6 case First => println("I'm first")
7 // Matches any string and assigns the value to a variable called second, shadowing the

↪→ outer variable
8 case second => println("I'm second")
9 }

10 }

Listing 7.1: Scala match variable shadowing example.

59

7.2 Results
The fault-proneness prediction performance of the candidate metrics has been measured us-
ing univariate and multivariate regression. The univariate regression shows the performance of
the metric on its own. The multivariate regression is done by adding the metric to the baseline
model and measuring the performance of all metric combined. The multivariate regression shows
whether the metric improves the baseline model.

The univariate regression results can be found in Table 7.1. Based on the MCC when using
Briand’s methodology, the number of lambda functions, lambda score, and implicit parameters
metrics are the best predictors on their own. When using Landkroon’s methodology, the num-
ber of lambda functions and source lines of lambda metrics are the best predictors on their own.
However, since the metrics are used to improve the prediction performance of the baseline model,
the precision is also very important. The precision indicates that the measure is a reliable way to
find (additional) faults and could potentially improve the baseline model. Based on the precision
the overriding pattern variables and lambda functions using assignments metrics would be the
best candidates when using Briand’s methodology. Nevertheless, the low recall of both metrics
does indicate that the improvements are likely minor since it does not find many (additional)
cases. When using Landkroon’s methodology, the source lines of lambda, lambda functions with
side effects, and overriding pattern variables metrics are the most promising candidates.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Briand’s methodology

NumberOfLambdaFunctions 34.18 8.20 44.55 4.91 0.305 0.052
SourceLinesOfLambda 36.66 8.35 41.49 5.25 0.311 0.052
LambdaScore 26.54 8.59 43.52 8.72 0.231 0.082
LambdaFunctionsUsingOuterVariables 35.72 42.69 16.73 32.37 0.072 0.099
LambdaFunctionsUsingLocalVariables 36.76 30.21 6.00 3.73 0.089 0.100
LambdaFunctionsWithSideEffects 33.43 17.88 16.93 10.51 0.167 0.122
LambdaFunctionsWithAssignment 39.06 32.69 8.06 4.63 0.119 0.127
ImplicitConversions 25.44 10.57 27.10 10.81 0.170 0.098
ImplicitDefinitions 32.76 10.60 32.49 10.99 0.237 0.097
ImplicitParameters 36.00 9.04 35.48 6.97 0.282 0.073
UnitVariables 22.79 17.98 17.30 32.98 0.042 0.044
FunctionVariables 34.84 10.85 27.96 8.51 0.235 0.092
UsageOfNull 36.89 12.77 15.32 5.39 0.172 0.061
NumberOfReturns 15.20 26.89 28.99 45.34 0.020 0.054
OverridingPatternVariables 44.79 15.35 14.24 6.27 0.194 0.055

Landkroon’s methodology
NumberOfLambdaFunctions 45.56 13.76 46.07 10.62 0.368 0.121
SourceLinesOfLambda 50.68 11.20 43.47 10.48 0.392 0.105
LambdaScore 33.08 9.49 46.90 12.49 0.273 0.108
LambdaFunctionsUsingOuterVariables 34.28 34.59 16.12 33.04 0.070 0.080
LambdaFunctionsUsingLocalVariables 47.80 31.41 4.35 3.71 0.096 0.091
LambdaFunctionsWithSideEffects 53.48 21.58 19.97 12.65 0.232 0.144
LambdaFunctionsWithAssignment 48.63 30.76 19.36 28.96 0.146 0.165
ImplicitConversions 35.94 13.02 33.80 13.54 0.240 0.131
ImplicitDefinitions 42.11 18.60 34.94 14.05 0.286 0.151
ImplicitParameters 42.91 13.30 34.72 10.49 0.293 0.096
UnitVariables 23.68 16.88 18.18 32.67 0.041 0.066
FunctionVariables 40.15 13.95 29.49 6.52 0.246 0.077
UsageOfNull 41.17 16.06 17.73 10.86 0.190 0.094
NumberOfReturns 29.17 40.75 41.10 48.99 0.046 0.088
OverridingPatternVariables 49.68 16.37 17.11 8.66 0.228 0.110

Table 7.1: Univariate regression fault-proneness prediction performance.

60

The results of the multivariate regression can be found in Table 7.2. The table shows the
performance of the baseline model followed by the differences in score when adding one of the
candidate metrics. As can be seen, the candidate metrics only have a small impact on the fault-
proneness prediction performance. For Briand’s methodology, the overriding pattern variables
and lambda functions using outer variables metrics show the largest improvements with an MCC
increase around 0.008. However, this is not significant enough to be meaningful. For Landkroon’s
methodology, the differences are even smaller. Overall, the candidate metrics do not yield large
improvements. However, the metrics with the highest precision in the univariate regression often
had a low recall. This is mainly because the constructs they measured did not occur often and,
therefore, those metrics can only give us information about small parts of the code base. These
metrics are still interesting to investigate, because they could indicate constructs that, although
they are not used often, commonly cause issues when used. These constructs should then be
investigated in detail to find the root causes.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Briand’s methodology

Baseline 31.34 8.00 62.23 7.64 0.346 0.066
NumberOfLambdaFunctions 0.21 −0.17 −0.71 −0.40 0.000 −0.003
SourceLinesOfLambda 0.43 0.21 −1.10 0.05 0.001 0.002
LambdaScore −0.23 −0.36 −0.61 0.13 −0.004 −0.004
LambdaFunctionsUsingOuterVariables 0.60 1.05 0.23 0.09 0.007 0.010
LambdaFunctionsUsingLocalVariables 0.04 0.25 0.44 0.35 0.002 0.006
LambdaFunctionsWithSideEffects 0.06 0.54 0.34 1.11 0.003 0.013
LambdaFunctionsWithAssignment 0.39 0.71 0.34 0.17 0.005 0.009
ImplicitConversions 0.41 −0.50 0.23 0.14 0.005 −0.004
ImplicitDefinitions 0.64 0.46 −0.69 −0.05 0.004 0.014
ImplicitParameters 0.37 −0.33 −1.07 0.02 0.000 −0.002
UnitVariables 0.27 0.16 0.08 −0.35 0.003 −0.003
FunctionVariables 0.04 0.93 −0.75 −0.67 −0.002 0.011
UsageOfNull 0.51 0.20 0.14 −0.44 0.006 0.000
NumberOfReturns 0.30 0.60 0.44 0.30 0.005 0.007
OverridingPatternVariables 0.52 −0.04 0.70 −0.01 0.008 −0.001

Landkroon’s methodology
Baseline 42.34 15.63 62.62 9.55 0.415 0.136
NumberOfLambdaFunctions −0.15 −0.10 0.37 −0.04 0.000 0.000
SourceLinesOfLambda −0.01 0.38 0.69 −0.13 0.002 0.004
LambdaScore −0.04 −0.01 0.14 −0.13 0.000 −0.001
LambdaFunctionsUsingOuterVariables −0.28 −0.26 0.27 0.46 −0.001 0.000
LambdaFunctionsUsingLocalVariables 0.07 −0.02 0.49 0.37 0.002 0.002
LambdaFunctionsWithSideEffects 0.00 0.12 0.37 −0.08 0.001 0.001
LambdaFunctionsWithAssignment −0.08 0.11 0.05 0.33 −0.001 0.003
ImplicitConversions 0.25 −0.25 0.09 −0.14 0.002 −0.002
ImplicitDefinitions 0.03 0.43 −0.15 0.41 −0.001 0.004
ImplicitParameters 0.08 0.38 0.53 0.39 0.002 0.006
UnitVariables 0.10 0.02 0.14 −0.06 0.001 0.000
UsageOfNull −0.02 0.02 0.25 0.08 0.000 0.000
FunctionVariables 0.21 0.03 0.14 −0.25 0.002 −0.001
NumberOfReturns 0.08 0.02 0.06 0.27 0.001 0.002
OverridingPatternVariables −0.17 0.05 0.37 0.20 0.000 0.002

Table 7.2: Multivariate regression fault-proneness prediction performance.

To investigate these metrics we have analysed two statistics:

S1. The percentage of objects containing faults for all the objects for which the metric has
measured results

S2. The percentage of objects for which the metric has measured results for all the objects
containing faults

61

Name Count S1 mean S1 std. S2 mean S2 std.
Briand’s methodology

All objects 7 10.66% 2.97% 100.00% 0.00%
NumberOfLambdaFunctions 7 26.10% 7.58% 55.38% 13.00%
SourceLinesOfLambda 7 26.10% 7.58% 55.38% 13.00%
LambdaScore 7 26.10% 7.58% 55.38% 13.00%
LambdaFunctionsUsingOuterVariables 5 50.58% 42.68% 3.97% 3.73%
LambdaFunctionsUsingLocalVariables 6 53.68% 14.54% 4.29% 3.48%
LambdaFunctionsWithSideEffects 7 39.55% 14.39% 15.68% 11.98%
LambdaFunctionsWithAssignment 6 52.21% 21.35% 6.69% 5.48%
ImplicitConversions 7 24.51% 10.31% 28.79% 10.60%
ImplicitDefinitions 7 25.36% 6.95% 43.91% 18.36%
ImplicitParameters 7 32.68% 8.96% 40.58% 8.64%
UnitVariables 6 26.18% 17.58% 3.55% 5.33%
FunctionVariables 7 30.07% 11.09% 33.04% 15.45%
UsageOfNull 7 36.89% 12.77% 15.32% 5.39%
NumberOfReturns 5 45.00% 44.72% 0.93% 1.46%
OverridingPatternVariables 7 44.79% 15.35% 14.24% 6.27%

Landkroon’s methodology
All objects 7 14.05% 4.47% 100.00% 0.00%
NumberOfLambdaFunctions 7 32.27% 7.53% 58.80% 15.43%
SourceLinesOfLambda 7 32.27% 7.53% 58.80% 15.43%
LambdaScore 7 32.27% 7.53% 58.80% 15.43%
LambdaFunctionsUsingOuterVariables 5 44.10% 36.41% 4.54% 5.98%
LambdaFunctionsUsingLocalVariables 6 61.55% 17.04% 3.49% 3.03%
LambdaFunctionsWithSideEffects 7 53.15% 21.35% 19.26% 14.42%
LambdaFunctionsWithAssignment 6 60.17% 18.63% 9.34% 11.78%
ImplicitConversions 7 35.68% 12.99% 35.49% 11.77%
ImplicitDefinitions 7 34.48% 12.32% 42.77% 15.29%
ImplicitParameters 7 39.60% 12.66% 40.66% 10.81%
UnitVariables 6 27.38% 16.36% 4.69% 9.39%
FunctionVariables 7 33.63% 14.24% 31.49% 8.69%
UsageOfNull 7 41.17% 16.06% 17.73% 10.86%
NumberOfReturns 5 35.00% 48.73% 1.56% 2.73%
OverridingPatternVariables 7 49.68% 16.37% 17.11% 8.66%

Table 7.3: Fault statistics per metric.

These statistics have been collected for each project and the average results can be found in
Table 7.3. For some projects, a few metrics had no results. These projects have been excluded
for those metrics. The amount of projects over which the average is calculated is shown in the
Count column. For Briand’s methodology, we can see that the lambda function using outer/local
variables and lambda function using assignment metrics only have results for less than 7% of
the faulty objects (S2). This means they are only related to a minority of the faults. However,
over 50% of the objects for which those metrics have measured results contain faults (S1). This
means that when an object within the selected projects uses, for example, a lambda function with
an assignment, there is over 50% chance this object contains a fault. This is significantly more

62

than when an object uses lambdas (around 26%) or the overall chance of an object containing
faults (around 10%). When using Landkroon’s methodology, over 60% of the objects for which
the lambda functions using local variables and lambda functions with assignment metrics have
measured results contain faults. These differences indicate that, although these constructs do
occur less often, they might be more fault-prone.

To verify to what extend the baseline model is affected by one of the candidate metrics when only
considering objects for which the metric has data, we have measured the multivariate regression
results on those objects with and without the candidate metric. The average MCC for Briand’s
methodology is visualized in Figure 7.1 and the average MCC for Landkroon’s methodology is
visualized in Figure 7.2. The full results can be found in Appendix D. Results have only been
collected for projects that had at least 10 objects containing faults left after filtering the objects
based on metric data. The number of projects over which the results have been averaged is dis-
played above each set of bars. Overall, the differences with and without the candidate metric are
very small. This indicates most faulty code is already detected by the baseline model without the
candidate metric. In some cases, there are significant improvements to the MCC when adding
the candidate metric. However, these significant improvements occur when only a single project
had enough data for analysis. This makes these results unreliable. Another interesting result
is that no projects had enough data for the number of returns metric. To verify this we have
searched for uses of the return keyword in the analysed projects and it was seldom used. This
is somewhat surprising since the use of return is very common in a lot of other programming
languages.

LambdaFunctionsUsingInnerVariables

LambdaFunctionsUsingOuterVariables

LambdaFunctionsWithAssignment

LambdaFunctionsWithSideEffects

LambdaScore

NumberOfLambdaFunctions

SourceLinesOfLambda

FunctionVariables

ImplicitConversions

ImplicitDefinitions

ImplicitParameters

OverridingPatternVariables

UnitVariables

UsageOfNull

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
CC

1

1

1

5

7 7 7

7
7

7

7 6

1

7

objectSumResultsBriand
Without candidate
With candidate

Figure 7.1: Multivariate regression fault-proneness prediction performance for objects with metric
results (Briand).

63

LambdaFunctionsUsingInnerVariables

LambdaFunctionsUsingOuterVariables

LambdaFunctionsWithAssignment

LambdaFunctionsWithSideEffects

LambdaScore

NumberOfLambdaFunctions

SourceLinesOfLambda

FunctionVariables

ImplicitConversions

ImplicitDefinitions

ImplicitParameters

OverridingPatternVariables

UnitVariables

UsageOfNull

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
CC

2

2

2

5

7 7 7 7 7
7 7 7

2

7

objectSumResultsLandkroon
Without candidate
With candidate

Figure 7.2: Multivariate regression fault-proneness prediction performance for objects with metric
results (Landkroon).

7.3 Conclusion
The results presented in Section 6.3 brings us to the following answers to the research questions:

RQ4 To what extent can the fault-proneness prediction performance of the baseline model be
improved by adding metrics tailored to the combination of OOP and FP?

None of the candidate metrics show a significant enough improvement to the baseline
model to establish with sufficient certainty that they are an improvement. Most of the
candidate metrics only measure specific constructs which do not occur often enough
in the large code-bases to make a difference. The results indicate that even when
the candidate metrics have results, the baseline model already manages to detect the
faulty objects and adding the candidate metric does not make a significant difference.
However, the candidate metrics have still resulted in interesting pointers to deter-
mine why the fault occurred instead of just determining that it occurred. Generally,
the majority of objects contained faults when lambda functions using variables, side-
effects and/or assignment were detected. This indicates that although these metrics
might not be a significant improvement over the baseline model, they could potentially
pinpoint why the code contained faults.

64

Chapter 8

Related work

Landkroon researched the applicability of existing OOP and FP metrics on Scala [30]. He has
shown that we can use existing OOP and FP metrics as an indication of fault-proneness. How-
ever, he indicates that the existing OOP and FP metrics do not cover everything and that the
results can be improved by adding metrics tailored to the MP paradigm. He also presents his own
validation methodology, based on Briand’s validation methodology [6]. Within Landkroon’s re-
search, his validation methodology has an overall higher performance (up to more than a two-fold
increase in completeness), especially for projects with longer life-cycles, compared to Briand’s
methodology.

C# started as an OOP language and has become an MP language by adding FP constructs.
Zuilhof defined and validated MP metrics for the functional side of C# [53]. These metrics focus
on lambda functions within C# and improve the fault-proneness prediction of most analyzed
projects.

Sipos, Pataki, and Porkoláb defined paradigm agnostic software complexity metrics for MP
languages [44]. These metrics are calculated by converting the program to a control-flowgraph
and applying the calculations to this graph. These have been validated on Aspect-Oriented Pro-
gramming and OOP projects.

Jordan and Collier researched multi-paradigm metrics for the combination of Agent-Oriented
Programming in combination with OOP [27]. They propose generalized paradigm-independent
versions of the Coupling Between Object Classes and Lack of Cohesion Of Methods metrics. The
generalized variants are called Coupling Between Elements and Lack of Cohesion of Elements.
These generalized metrics reason about abstractions and elements instead of classes, methods
and fields.

Next to the research that has been done in the field of MP metrics, the industry has also
developed static code analysis tools. Some of these tools include support for MP languages such
as Scala. One of the most well-known tools in this area is SonarQube [45]. SonarQube focuses
on detecting patterns that are likely to be bugs, vulnerabilities or code smells. These patterns
are detected using rules. Each language has its own set of rules. SonarQube includes rules for
Scala [46]. Most of the rules for Scala are simple patterns, e.g. no empty methods or no du-
plicate implementations. There is also a rule that is based on the cognitive complexity metric.
Cognitive Complexity is SonarQube’s alternative for Cyclomatic Complexity [7]. It is aimed at

65

accurately reflecting the relative difficulty of understanding, and therefore of maintaining meth-
ods, classes, and applications. Code is considered more complex when it has breaks in the linear
flow (like loops or recursion) or has nested structures. Apart from the Cognitive Complexity
metric, SonarQube does not implement any other metrics for Scala (only patterns).

The Software Improvement Group (SIG) has a tool called BetterCodeHub [16]. This tool imple-
ments the measurements of the maintainability model by SIG[50]. It has support for measuring
Scala programs. One of the goals of the maintainability model is to be language-independent. As
a result of this, the measurements of BetterCodeHub are mostly language-independent. There is
one exception however, the unit complexity. The complexity is measured using McCabe’s com-
plexity measure [31]. Van den Berg has carried out an experiment in which experts ranked the
readability of programs written in the imperative language Pascal and the FP language Miranda
[49]. Metrics, including McCabe’s complexity measure, were then applied to the programs. The
correlation between the ordering of the metric results and the experts’ opinions was measured.
This case study showed that while there was a reasonably high correlation between the metrics
and the experts’ view for imperative programs (Pascal), the correlation was significantly lower
for functional programs (Miranda).

66

Chapter 9

Conclusion

This chapter concludes this Masters’ thesis. Section 9.1 summarises the conclusions to the
research question. Section 9.2 evaluates and discusses the design choices. Finally, Section 9.3
presents several ideas and directions for future investigation.

9.1 Findings
The answers to the research questions are as follows:

RQ1 Which, if any, OOP or FP constructs in Scala are significantly more fault-prone than
others?

Within Scala, OOP constructs that are not imperative can be considered neutral
and the program logic uses imperative and/or functional constructs. Within these
imperative and functional constructs, there is not a single set of constructs that is
significantly more fault-prone than others. However, there is still a difference between
constructs. The most fault-prone constructs are (outer) variable usage, variable def-
initions, inner variable assignments, functions with side-effects, nested methods and
pattern matching.

RQ2 How well does the paradigm score perform as a predictor for fault-proneness?

The paradigm score on its own does not perform well as a predictor for fault-proneness.
The precision of the different paradigm scores was around 10% and the recall around
60%.

RQ3 To what extent is the fault-proneness prediction ability of existing OOP and FP metrics
affected by the mix of OOP and FP within a class or method?

The results are slightly less reliable because most projects did not have enough OOP
data available. The general metrics perform well on every category, especially when
using Landkroon’s methodology. Surprisingly enough, most OOP metrics perform
better on the FP and mixed categories than in the OOP category. Especially the
response for class and, when using Briand’s methodology, the weighted method count
perform significantly worse for the OOP category compared to the FP and mixed
categories. When using Briand’s methodology the lack of cohesion of methods metric
only performs well in the OOP category. However, this effect does not occur when

67

using Landkroon’s methodology. The FP metrics perform well in the FP and mixed
categories. Most FP metrics also perform fairly well in the OOP category, with
the exception of outdegree distinct. Overall, there are not many metrics which only
perform well on a certain category or show a significant improvement compared to their
performance without splitting by paradigm. An interesting effect that was observed
when splitting the code by paradigm was that mixed code had a significantly higher
percentage of faults in the analysed projects.

RQ4 To what extent can the fault-proneness prediction performance of the baseline model be
improved by adding metrics tailored to the combination of OOP and FP?

None of the candidate metrics show a significant enough improvement to the baseline
model to establish with sufficient certainty that they are an improvement. Most of the
candidate metrics only measure specific constructs which do not occur often enough
in the large code-bases to make a difference. The results indicate that even when
the candidate metrics have results, the baseline model already manages to detect the
faulty objects and adding the candidate metric does not make a significant difference.
However, the candidate metrics have still resulted in interesting pointers to determine
why the fault occurred instead of just determining that it occurred. Generally, the
majority of objects contained faults when lambda functions using variables, side-effects
and/or assignments were detected. This indicates that although these metrics might
not be an improvement over the baseline model, they could potentially pinpoint why
the code contained faults.

Overall, the baseline model performed decently and the performance was not significantly im-
proved by adding one of the candidate metrics tailored to the combination of OOP and FP.
Even when only considering the cases in which the candidate metric was relevant, there was no
significant improvement over the baseline model. However, the fault-proneness prediction of the
baseline model can only tell us when code is likely to contain faults. It does not provide us
with information on why the code contains faults. If we know why the code contains faults, we
can detect patterns that cause these faults and use those detections to prevent the faults from
reaching production code. The candidate metrics can provide insights into why code contains
faults. One of the areas that warrants further investigation to find such patterns, is when using
lambda functions with variables, side-effects and/or assignments. The majority of objects using
these lambda functions contained faults, therefore this is a promising area to investigate.

9.2 Discussion
Initially, we assumed that the paradigm score would be a measure comparing the number of OOP
constructs to the number of FP constructs used in a piece of code. However, while defining the
paradigm score we realized that OOP within Scala could be considered as a separate paradigm
from imperative programming. The type system and encapsulation within Scala is based on
OOP and the related constructs are not only used when writing OOP-style code, but also when
writing FP-style code. Therefore, these constructs are used independent of style and can be con-
sidered neutral. For the paradigm score to accurately reflect which style the code is written in, we
had to exclude these neutral OOP constructs and instead only measure the imperative constructs.

The metrics were measured using the AST of the Scala compiler. This AST has already been
preprocessed by the compiler. During this preprocessing, for-expressions are translated to filter,
map and foreach calls. This affects the results of some of the metrics, including the paradigm

68

score, since these calls are higher-order methods. The advantage of using the Scala compiler
AST is that it is possible to measure inferred types and the application of implicit conversion-
s/parameters. This information is not always complete, because not all external libraries are
available. However, most typing information is available and having access to this information
helped developing metrics.

The fault-analysis assumes every issue is correctly labelled and the issue is mentioned in the
commit or pull-request that fixed it. This is, of course, not always the case. First of all, issues
can be mislabelled. Issues could be incorrectly labelled as a bug, or, more commonly, issues
which should have been labelled as bug remain unlabeled. Furthermore, commits or pull-request
do not always mention the issues they fix, especially if this is only discovered afterwards that
the issue is fixed. This could also be positive, because if a commit explicitly mentions an issue
it is more likely to be a fix commit, instead of a different type of commit that happens to fix
the issue as a side-effect. However, commits that change more code than needed to fix the bug
are still likely to be included in the analysis. This results in some code being marked incorrectly
as containing faults, which decreases the reliability of the analysis. A small set of fix commits
of each analysed projects has been investigated to make sure the projects are reliable. There
are likely still inconsistencies, but the bulk analysis across several projects should minimize the
impact.

Finally, most of the selected projects did not contain enough OOP-style code for analysis. Be-
cause of this, the metric performance by paradigm comparison could only use 2 out of the 7
projects for Briand’s methodology and 3 out of 7 for Landkroon’s methodology. This makes the
results of the comparison less reliable and representative.

9.3 Future work
There are always more metrics to validate and different variations on existing metrics. Some
of these could improve the baseline model or provide new insights on why code contains faults.
This research provides an implementation for defining and analysing metrics, including a set of
projects to analyse and performance data of the metrics analysed in this research. Upon this
basis, new metrics can be defined and explored.

Another approach is to investigate how the analysed metrics perform on different projects. Cur-
rently, seven projects have been analysed, most of which did not contain enough OOP code for
the analysis split by paradigm score. It would be interesting to see how the addition of other
projects affects the results. Generally, only larger projects have enough issues labelled as faults
to provide reliable results. The Apache organisation manages some of the largest Scala projects.
These projects use Jira as issue tracker and meticulously label their faults. Adding support for
the Jira issue tracker to the framework would allow the analysis of these projects.

Some of the analysed metrics could be further investigated to find out why the code contains
faults. Constructs related to these metrics could be investigated in detail to find common mis-
takes that cause faults. If we know which common mistakes cause these faults, we can implement
patterns that detect these faults and use those to prevent the faults from reaching production
code. The resulting patterns could be added to code analysis tools like SonarQube [45]. Based on
the fault-statistics of the investigated metrics, the lambda functions using variables, side-effects
and assignments are the most promising metrics.

69

Finally, it would be interesting to see how the metrics perform on other multi-paradigm lan-
guages. The design of both the Scala language itself and the Scala standard library affects how
the language is used. This is different for other multi-paradigm languages and could affect the re-
sults. The popularity of relatively new multi-paradigm languages like Kotlin is rapidly increasing
[8]. These languages would be interesting to investigate.

70

References

[1] Alvin Alexander. Scala Book. 2020. url: https://docs.scala- lang.org/overviews/
scala-book/introduction.html (visited on 02/19/2020).

[2] Oliver Arafati and Dirk Riehle. “The comment density of open source software code”. In:
2009 31st International Conference on Software Engineering-Companion Volume. IEEE.
2009, pp. 195–198.

[3] Tibor Bakota et al. “A probabilistic software quality model”. In: 2011 27th IEEE Interna-
tional Conference on Software Maintenance (ICSM). IEEE. 2011, pp. 243–252.

[4] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. “A validation of object-oriented
design metrics as quality indicators”. In: IEEE Transactions on software engineering 22.10
(1996), pp. 751–761.

[5] Lionel C Briand, Walcelio L. Melo, and Jurgen Wust. “Assessing the applicability of fault-
proneness models across object-oriented software projects”. In: IEEE transactions on Soft-
ware Engineering 28.7 (2002), pp. 706–720.

[6] Lionel Briand, Khaled El Emam, and Sandro Morasca. “Theoretical and empirical val-
idation of software product measures”. In: International Software Engineering Research
Network, Technical Report ISERN-95-03 (1995).

[7] G. Ann Campbell. Cognitive Complexity: A new way of measuring understandability. Tech.
rep. SonarSource, 2018.

[8] Pierre Carbonnelle. PYPL PopularitY of Programming Language. 2020. url: https://
pypl.github.io (visited on 03/27/2020).

[9] Arti Chhikara, RS Chhillar, and Sujata Khatri. “Applying object oriented metrics to C#
(C Sharp) programs”. In: International Journal of Computer Technology and Applications
2.3 (2011), pp. 666–674.

[10] Davide Chicco and Giuseppe Jurman. “The advantages of the Matthews correlation co-
efficient (MCC) over F1 score and accuracy in binary classification evaluation”. In: BMC
genomics 21.1 (2020), p. 6.

[11] Shyam R Chidamber and Chris F Kemerer. “A metrics suite for object oriented design”.
In: IEEE Transactions on software engineering 20.6 (1994), pp. 476–493.

[12] Alonzo Church. “A set of postulates for the foundation of logic”. In: Annals of mathematics
(1932), pp. 346–366.

[13] Fabrizio Fioravanti and Paolo Nesi. “A study on fault-proneness detection of object-
oriented systems”. In: Proceedings Fifth European Conference on Software Maintenance
and Reengineering. IEEE. 2001, pp. 121–130.

71

https://docs.scala-lang.org/overviews/scala-book/introduction.html
https://docs.scala-lang.org/overviews/scala-book/introduction.html
https://pypl.github.io
https://pypl.github.io

[14] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson Ed-
ucation India, 1995.

[15] Daniela Glasberg et al. Validating object-oriented design metrics on a commercial java
application. Citeseer, 2000.

[16] Software Improvement Group. Better Code Hub. 2020. url: https://bettercodehub.com/
(visited on 04/16/2020).

[17] Qiong Gu, Li Zhu, and Zhihua Cai. “Evaluation measures of the classification performance
of imbalanced data sets”. In: International symposium on intelligence computation and
applications. Springer. 2009, pp. 461–471.

[18] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. “Empirical validation of object-oriented
metrics on open source software for fault prediction”. In: IEEE Transactions on Software
engineering 31.10 (2005), pp. 897–910.

[19] Péter Hegedűs. “A probabilistic quality model for c#-an industrial case study”. In: Acta
Cybernetica 21.1 (2013), pp. 135–147.

[20] Brian Henderson-Sellers, Larry L Constantine, and Ian M Graham. “Coupling and cohesion
(towards a valid metrics suite for object-oriented analysis and design)”. In: Object oriented
systems 3.3 (1996), pp. 143–158.

[21] Martin Hitz and Behzad Montazeri. “Chidamber and Kemerer’s metrics suite: a measure-
ment theory perspective”. In: IEEE Transactions on software Engineering 22.4 (1996),
pp. 267–271.

[22] Martin Hitz and Behzad Montazeri. Measuring coupling and cohesion in object-oriented
systems. Citeseer, 1995.

[23] Cay S Horstmann. Scala for the Impatient. Pearson Education, 2012.
[24] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic regres-

sion. Vol. 398. John Wiley & Sons, 2013.
[25] Systems and software engineering – Systems and software Quality Requirements and Eval-

uation (SQuaRE) – System and software quality models. Standard. Geneva, CH: Interna-
tional Organization for Standardization, Mar. 2011.

[26] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types: type infer-
ence for generalised algebraic data types. Tech. rep. Technical Report MS-CIS-05-26, Univ.
of Pennsylvania, 2004.

[27] Howell R Jordan and Rem Collier. “Evaluating agent-oriented programs: Towards multi-
paradigm metrics”. In: International Workshop on Programming Multi-Agent Systems.
Springer. 2010, pp. 63–78.

[28] Alan Kay and Stefan Ram. Dr. Alan Kay on the Meaning of “Object-Oriented Program-
ming”. 2003. url: http://www.purl.org/stefan_ram/pub/doc_kay_oop_en (visited on
09/05/2020).

[29] Sven Konings. Code Quality Analysis when Mixing Functional and Object-Oriented Pro-
gramming in Scala. Tech. rep. Info Support, 2020.

[30] Erik Landkroon. “Code Quality Evaluation for the Multi-Paradigm Programming Lan-
guage Scala”. MA thesis. Universiteit van Amsterdam, 2017.

[31] Thomas J McCabe. “A complexity measure”. In: IEEE Transactions on software Engineer-
ing 4 (1976), pp. 308–320.

72

https://bettercodehub.com/
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en

[32] Asma Mubarak, Steve Counsell, and Robert M Hierons. “An evolutionary study of fan-
in and fan-out metrics in OSS”. In: 2010 Fourth International Conference on Research
Challenges in Information Science (RCIS). IEEE. 2010, pp. 473–482.

[33] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima Inc, 2019.
[34] Martin Odersky et al. An Overview of the Scala Programming Language. Tech. rep. EPFL,

2006.
[35] Martin Odersky et al. “The Scala language specification version 2.13”. In: Programming

Methods Laboratory, EPFL. Citeseer. 2019.
[36] Chao-Ying Joanne Peng, Kuk Lida Lee, and Gary M Ingersoll. “An introduction to logistic

regression analysis and reporting”. In: The journal of educational research 96.1 (2002),
pp. 3–14.

[37] Chris Ryder. “Software measurement for functional programming”. PhD thesis. Computing
Lab, University of Kent, 2004.

[38] Chris Ryder and Simon J Thompson. “Software metrics: measuring Haskell.” In: Trends in
Functional Programming. 2005, pp. 31–46.

[39] Lukas Rytz and Martin Odersky. “Named and default arguments for polymorphic object-
oriented languages: a discussion on the design implemented in the Scala language”. In:
Proceedings of the 2010 ACM Symposium on Applied Computing. 2010, pp. 2090–2095.

[40] S. k. Samuel. Scapegoat. 2020. url: https://github.com/sksamuel/scapegoat (visited on
08/03/2020).

[41] Scala Center. Scaladex. 2020. url: https://index.scala-lang.org/ (visited on 04/17/2020).
[42] Scala Center. The Scala programming language. 2020. url: https://www.scala-lang.org/

(visited on 02/19/2020).
[43] Scala Center. Tour of Scala. 2020. url: https://docs.scala-lang.org/tour/tour-of-

scala.html (visited on 02/20/2020).
[44] Adám Sipos, Norbert Pataki, and Zoltán Porkoláb. “On multiparadigm software complexity

metrics”. In: MaCS 2006 6th Joint Conference on Mathematics and Computer Science. 2006,
pp. 85–100.

[45] SonarSource. Code Quality and Security | SonarQube. 2020. url: https://www.sonarqube.
org/ (visited on 04/16/2020).

[46] SonarSource. Scala Static Code Analysis Rules | Scala Code Analyzer. 2020. url: https:
//rules.sonarsource.com/scala/ (visited on 04/16/2020).

[47] Mervyn Stone. “Cross-validatory choice and assessment of statistical predictions”. In: Jour-
nal of the Royal Statistical Society: Series B (Methodological) 36.2 (1974), pp. 111–133.

[48] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. “An empirical study on object-
oriented metrics”. In: Proceedings sixth international software metrics symposium (Cat.
No. PR00403). IEEE. 1999, pp. 242–249.

[49] Klaas Van den Berg. “Software measurement and functional programming”. In: University
of Twente (1995).

[50] Joost Visser. SIG/TÜViT Evaluation Criteria Trusted Product Maintainability Version
11.0. Tech. rep. Software Improvement Group, 2019.

[51] Joost Visser et al. Building Maintainable Software: Ten Guidelines for Future-Proof Code.
O’Reilly Media, 2016.

73

https://github.com/sksamuel/scapegoat
https://index.scala-lang.org/
https://www.scala-lang.org/
https://docs.scala-lang.org/tour/tour-of-scala.html
https://docs.scala-lang.org/tour/tour-of-scala.html
https://www.sonarqube.org/
https://www.sonarqube.org/
https://rules.sonarsource.com/scala/
https://rules.sonarsource.com/scala/

[52] Dean Wampler and Alex Payne. Programming Scala: Scalability = Functional Programming
+ Objects. ” O’Reilly Media, Inc.”, 2014.

[53] Bart Zuilhof. “Code Quality Metrics for the Functional Side of the Object-Oriented Lan-
guage C#”. MA thesis. Universiteit van Amsterdam, 2019.

74

Appendix A

Fractional Paradigm Score plots

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Akka methods

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7
Im

pe
ra

tiv
e

sc
or

e
Akka objects

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Gitbucket methods

100

101

102

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Gitbucket objects

100

101

Figure A.1: Fractional paradigm score scatter plots. Color indicates number of occurrences.

75

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Http4s methods

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Http4s objects

100

101

102

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Quill methods

100

101

102

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7
Im

pe
ra

tiv
e

sc
or

e
Quill objects

100

101

102

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Scio methods

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Scio objects

100

101

102

Figure A.1: Fractional paradigm score scatter plots. Color indicates number of occurrences.

76

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Shapeless methods

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

Shapeless objects

100

101

102

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

ZIO methods

100

101

102

103

0 1 2 3 4 5 6 7
Functional score

0

1

2

3

4

5

6

7

Im
pe

ra
tiv

e
sc

or
e

ZIO objects

100

101

102

Figure A.1: Fractional paradigm score scatter plots. Color indicates number of occurrences.

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

1000

2000

3000

4000

5000

6000

7000

8000

Oc
cu

rre
nc

es

97%

94%

84% 86% 84% 82% 87% 90% 89% 89%

92%

Akka methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

1400

1600

Oc
cu

rre
nc

es

94%

90%

77%
80% 79% 73% 76% 79%

80%
79%

90%

Akka objects

Figure A.2: Fractional paradigm score histograms. Red (bottom color) indicates faulty code,
green (top color) indicates non-faulty code. Percentage indicates the percentage of non-faulty
code.

77

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

100

200

300

400

Oc
cu

rre
nc

es

99%

88%

80% 76%

91%

90% 83% 100%100% 71%

90%
Gitbucket methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

20

40

60

80

100

Oc
cu

rre
nc

es

96%

74%

67%

67% 69% 85% 73%

80%
71%

68%

77%

Gitbucket objects

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

1400

1600

Oc
cu

rre
nc

es

97%

89%
95% 82% 90% 74% 88% 90% 75% 75%

90%

Http4s methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

50

100

150

200

250

300

350

400
Oc

cu
rre

nc
es

95%

93% 74% 87% 89% 82%
78%

85%
82% 77%

80%

Http4s objects

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

Oc
cu

rre
nc

es

99%

94%
100%100%100% 92% 100% 86% 100% 81%

95%
Quill methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

50

100

150

200

250

Oc
cu

rre
nc

es

97%

100%100%100%100%100%
94%

92%
88%

90%

88%

Quill objects

Figure A.2: Fractional paradigm score histograms. Red (bottom color) indicates faulty code,
green (top color) indicates non-faulty code. Percentage indicates the percentage of non-faulty
code.

78

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

200

400

600

800

1000

1200

Oc
cu

rre
nc

es

95%

92%

83% 94% 93% 91% 87% 94% 75% 72%

92%

Scio methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

50

100

150

200

250

300

Oc
cu

rre
nc

es

93%

86%

81%

92%
88%

85%
78% 81%

74%

73%

82%

Scio objects

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

250

500

750

1000

1250

1500

1750

Oc
cu

rre
nc

es

96%

100%100%100%100%100% 92% 90% 80% 65%

92%

Shapeless methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

100

200

300

400

500

600

700

800
Oc

cu
rre

nc
es

94%

100% 71% 100% 75%
73%

86%

89%

91%

Shapeless objects

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

500

1000

1500

2000

2500

Oc
cu

rre
nc

es

94%

98%

100% 98% 93% 91% 99% 96% 95% 92%

85%
ZIO methods

No points -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Paradigm score

0

25

50

75

100

125

150

175

Oc
cu

rre
nc

es

93%

91%
96%

100%

97% 90%
85%

90%
83% 79%

91%
ZIO objects

Figure A.2: Fractional paradigm score histograms. Red (bottom color) indicates faulty code,
green (top color) indicates non-faulty code. Percentage indicates the percentage of non-faulty
code.

79

Appendix B

Construct measurement results

This appendix contains the average fault-proneness prediction performance results over all the
projects. The results for each individual project can be found online at https://github.com/
svenkonings/ScalaMetrics/tree/master/data/analysisResults.

B.1 Briand’s methodology

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 15.32 4.32 61.22 10.52 0.189 0.031

HasOuterVariableUsage 18.19 15.09 48.34 48.41 0.063 0.040
HasVariables 17.95 8.20 22.86 34.43 0.070 0.042
HasVariableDefinitions 17.64 7.26 17.90 35.76 0.045 0.025
HasSideEffectFunctions 17.26 11.61 23.70 31.94 0.049 0.069
HasInnerVariableAssignment 16.64 6.85 18.34 35.55 0.047 0.028
HasSideEffectCalls 15.12 3.00 32.85 31.21 0.100 0.034
HasPatternMatching 15.08 4.12 32.15 8.87 0.122 0.040
HasSideEffects 14.56 3.85 39.64 26.95 0.105 0.023
HasLazyValues 14.45 6.65 29.15 44.79 0.030 0.027
ImperativeScoreBool 14.36 3.72 39.58 26.79 0.106 0.012
HasHigherOrderCalls 14.27 5.36 42.89 15.73 0.128 0.052
HasNestedMethods 14.21 6.15 11.60 5.72 0.054 0.049
HasFunctionCalls 13.77 4.97 38.51 41.96 0.066 0.041
FunctionalScoreBool 13.44 3.18 52.97 7.71 0.143 0.023
HasMultipleParameterLists 13.10 6.68 42.38 26.51 0.099 0.074
HasFunctions 13.01 3.76 50.32 16.33 0.126 0.036
HasFunctionParameters 12.06 4.61 24.51 19.39 0.067 0.074
IsNested 11.17 4.09 30.60 46.61 0.028 0.012
HasPointsBool 10.40 2.76 80.58 10.43 0.129 0.035
HasOuterVariableAssignment 10.37 5.24 54.20 45.22 0.033 0.047
IsSideEffect 10.37 3.95 46.34 38.96 0.045 0.041
IsFunction 10.16 3.08 61.84 47.98 0.039 0.020
ParadigmScoreBool 9.70 4.23 59.01 10.32 0.067 0.076
HasCurrying 9.36 6.67 34.55 44.32 0.030 0.045
IsRecursive 9.04 4.36 36.75 43.57 0.011 0.023

Table B.1: Boolean construct measurements prediction performance.

80

https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults
https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 14.94 5.47 58.32 10.25 0.177 0.047

CountOuterVariableUsage 18.19 15.09 48.34 48.41 0.063 0.040
CountVariables 17.95 8.20 22.86 34.43 0.070 0.042
CountVariableDefinitions 16.48 8.25 18.87 35.40 0.038 0.032
CountInnerVariableAssignment 16.46 7.00 7.06 6.03 0.039 0.037
CountSideEffectFunctions 16.20 12.18 20.81 30.86 0.045 0.071
CountSideEffects 16.05 3.46 32.96 20.98 0.112 0.046
ImperativeScoreCount 15.94 3.20 35.90 27.17 0.121 0.024
CountSideEffectCalls 15.89 2.75 31.05 30.37 0.106 0.044
CountPatternMatching 15.08 4.12 32.15 8.87 0.122 0.040
FunctionalScoreCount 14.76 3.87 47.53 6.84 0.155 0.032
CountHigherOrderCalls 14.63 5.63 37.66 9.51 0.124 0.050
CountNestedMethods 14.40 5.87 11.47 5.41 0.058 0.043
CountFunctions 13.91 2.96 42.32 5.27 0.130 0.041
CountFunctionCalls 13.77 4.97 38.51 41.96 0.066 0.041
CountParameterLists 13.10 6.68 42.38 26.51 0.099 0.074
CountLazyValues 12.50 5.97 31.77 46.41 0.024 0.027
CountFunctionParameters 12.06 4.61 24.51 19.39 0.067 0.074
CountNestedDepth 11.17 4.09 30.60 46.61 0.028 0.012
HasPointsCount 10.43 2.77 80.56 10.42 0.130 0.036
CountOuterVariableAssignment 10.40 5.23 61.34 48.15 0.034 0.046
ParadigmScoreCount 10.13 3.77 58.83 13.52 0.087 0.053
CountCurrying 9.36 6.67 34.55 44.32 0.030 0.045
CountRecursiveCalls 9.16 4.21 45.53 49.50 0.015 0.019

Table B.2: Count construct measurements prediction performance.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 13.42 4.33 64.35 9.76 0.166 0.040

FractionSideEffectFunctions 17.41 11.80 33.56 42.19 0.050 0.068
FractionOuterVariableUsage 16.49 15.49 60.88 47.19 0.044 0.059
FractionSideEffectCalls 14.92 2.88 31.02 31.00 0.094 0.028
FractionPatternMatching 14.84 4.44 29.01 7.60 0.112 0.044
FractionVariableDefinitions 14.64 8.40 30.79 42.55 0.027 0.040
FractionVariables 13.91 9.82 43.01 39.61 0.033 0.071
FractionNestedMethods 13.72 6.32 12.26 4.93 0.052 0.049
FractionHigherOrderCalls 13.41 5.73 35.67 9.05 0.100 0.066
FractionFunctions 12.20 4.07 40.62 15.96 0.100 0.050
FractionSideEffects 11.93 3.02 35.95 26.38 0.078 0.036
ImperativeScoreFraction 11.70 3.04 36.82 25.92 0.077 0.040
FunctionalScoreFraction 11.69 3.35 55.36 5.25 0.115 0.028
FractionInnerVariableAssignment 11.17 5.33 20.25 34.78 0.024 0.028
FractionFunctionCalls 10.83 3.81 51.58 42.63 0.038 0.066
HasPointsFraction 10.40 2.76 80.58 10.43 0.129 0.035
ParadigmScoreFraction 10.09 4.09 64.10 11.42 0.084 0.079
FractionCurrying 9.49 6.64 47.48 48.68 0.031 0.046
FractionOuterVariableAssignment 9.32 4.86 62.60 46.42 0.030 0.046
FractionRecursiveCalls 7.50 2.63 71.63 42.20 0.007 0.021
FractionLazyValues 7.49 2.47 73.29 39.49 −0.007 0.017

Table B.3: Fractional construct measurements prediction performance.

81

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 13.91 2.84 52.14 7.40 0.152 0.021

SideEffects 17.95 8.20 22.86 34.43 0.070 0.042
ImperativeScoreLandkroon 14.65 4.71 23.32 31.60 0.062 0.052
FunctionalCalls 14.23 3.77 40.38 7.55 0.128 0.038
FunctionalScoreLandkroon 13.93 3.03 44.86 8.11 0.137 0.021
ImperativeCalls 13.60 6.01 20.46 35.28 0.038 0.036
ParadigmScoreLandkroon 13.11 3.37 50.82 12.94 0.132 0.025
HasPointsLandkroon 12.77 3.09 57.80 9.54 0.138 0.031
HigherOrder 12.06 4.61 24.51 19.39 0.067 0.074
Nested 11.17 4.09 30.60 46.61 0.028 0.012
Recursive 9.22 4.25 42.51 44.47 0.013 0.021

Table B.4: Landkroon construct measurements prediction performance.

B.2 Landkroon’s methodology

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 13.87 5.78 57.77 8.29 0.155 0.057

HasPatternMatching 15.16 7.66 36.14 9.84 0.125 0.088
HasNestedMethods 14.88 8.49 13.80 6.40 0.065 0.045
HasVariableDefinitions 14.59 10.44 26.44 40.47 0.028 0.032
HasLazyValues 14.20 5.75 19.50 36.04 0.032 0.024
HasSideEffectFunctions 14.00 4.54 20.46 35.55 0.044 0.043
HasOuterVariableUsage 13.19 6.74 46.20 44.73 0.041 0.039
HasInnerVariableAssignment 12.23 8.27 29.03 41.59 0.020 0.030
HasVariables 12.21 6.01 23.84 33.98 0.041 0.040
FunctionalScoreBool 11.71 4.69 54.23 10.19 0.106 0.049
HasFunctionCalls 11.51 6.16 37.03 41.35 0.039 0.036
HasSideEffects 11.10 4.42 32.07 18.01 0.055 0.052
HasMultipleParameterLists 11.10 5.36 39.01 30.71 0.063 0.063
ImperativeScoreBool 11.06 4.59 45.89 28.77 0.052 0.051
IsFunction 11.06 7.31 61.48 48.27 0.040 0.045
HasSideEffectCalls 10.88 5.76 47.67 29.97 0.050 0.049
HasFunctions 10.76 4.57 52.95 15.60 0.075 0.047
HasOuterVariableAssignment 10.51 6.42 33.22 39.72 0.017 0.028
HasHigherOrderCalls 10.32 3.80 50.75 21.04 0.057 0.036
HasPointsBool 10.06 4.38 78.80 9.39 0.100 0.050
ParadigmScoreBool 9.79 4.74 59.45 9.28 0.062 0.065
HasFunctionParameters 9.36 3.93 14.24 11.60 0.018 0.017
IsRecursive 9.14 3.93 44.49 47.65 0.013 0.017
IsSideEffect 9.02 3.19 67.89 38.39 0.034 0.033
IsNested 8.95 3.10 49.28 47.13 0.015 0.015
HasCurrying 7.31 3.79 37.27 42.78 0.003 0.013

Table B.5: Boolean construct measurements prediction performance.

82

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 14.61 6.44 55.67 7.25 0.160 0.069

CountNestedMethods 14.88 8.49 13.80 6.40 0.065 0.045
CountPatternMatching 14.82 7.79 37.56 9.80 0.117 0.100
CountSideEffectFunctions 14.00 4.54 20.46 35.55 0.044 0.043
CountLazyValues 13.32 6.60 19.42 35.68 0.029 0.027
CountOuterVariableUsage 13.18 6.75 38.03 43.15 0.042 0.038
CountVariableDefinitions 12.54 10.28 20.67 35.01 0.021 0.036
CountSideEffects 12.29 4.07 34.59 28.58 0.066 0.055
FunctionalScoreCount 12.25 4.82 40.17 8.78 0.097 0.071
ImperativeScoreCount 12.13 4.26 34.17 28.82 0.064 0.053
CountVariables 11.55 6.73 26.20 33.78 0.034 0.050
CountFunctionCalls 11.51 6.16 37.03 41.35 0.039 0.036
CountInnerVariableAssignment 11.44 7.29 31.03 46.78 0.019 0.032
CountSideEffectCalls 11.14 5.59 35.70 29.97 0.054 0.051
CountParameterLists 11.10 5.36 39.01 30.71 0.063 0.063
CountOuterVariableAssignment 10.57 6.36 44.69 46.01 0.019 0.027
CountHigherOrderCalls 10.19 3.44 31.25 5.69 0.044 0.057
CountFunctions 10.18 3.72 32.69 7.56 0.052 0.056
HasPointsCount 10.07 4.38 78.76 9.40 0.101 0.050
ParadigmScoreCount 10.05 4.35 59.88 9.75 0.075 0.047
CountFunctionParameters 9.50 3.89 13.28 11.60 0.020 0.014
CountRecursiveCalls 9.23 3.96 56.95 43.76 0.012 0.018
CountNestedDepth 8.95 3.10 49.28 47.13 0.015 0.015
CountCurrying 7.35 3.90 32.33 36.55 0.001 0.013

Table B.6: Count construct measurements prediction performance.

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 13.01 5.12 59.44 7.83 0.144 0.050

FractionNestedMethods 14.78 8.72 25.29 29.59 0.062 0.050
FractionSideEffectFunctions 14.00 4.56 20.39 35.57 0.043 0.043
FractionPatternMatching 13.75 5.53 30.95 7.04 0.098 0.055
FractionVariableDefinitions 12.66 10.22 56.85 49.10 0.019 0.038
FunctionalScoreFraction 10.97 4.25 52.64 6.53 0.091 0.041
FractionInnerVariableAssignment 10.67 7.56 56.41 42.82 0.011 0.035
FractionSideEffectCalls 10.52 5.33 56.37 39.09 0.044 0.039
FractionLazyValues 10.44 4.26 61.34 46.74 0.002 0.041
FractionFunctions 10.23 3.84 44.87 18.26 0.057 0.031
FractionHigherOrderCalls 10.11 3.35 47.74 23.85 0.052 0.026
ParadigmScoreFraction 10.11 4.99 62.60 10.15 0.075 0.072
HasPointsFraction 10.06 4.38 78.80 9.39 0.100 0.050
FractionVariables 9.78 6.52 63.54 37.08 0.014 0.041
FractionSideEffects 9.75 4.06 52.25 29.33 0.037 0.049
FractionOuterVariableUsage 9.73 5.82 53.41 43.17 0.024 0.025
FractionFunctionCalls 9.69 5.87 68.40 38.32 0.013 0.052
ImperativeScoreFraction 9.57 4.34 66.26 28.96 0.026 0.063
FractionOuterVariableAssignment 8.87 2.99 61.55 47.71 0.014 0.022
FractionRecursiveCalls 8.23 2.63 72.16 44.65 0.011 0.017
FractionCurrying 7.44 3.95 57.60 49.85 0.005 0.011

Table B.7: Fractional construct measurements prediction performance.

83

Name Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Multivariate regression 12.37 4.85 46.84 15.37 0.111 0.064

FunctionalCalls 13.57 5.10 38.07 7.85 0.106 0.085
ImperativeCalls 12.87 5.93 31.75 40.26 0.044 0.039
FunctionalScoreLandkroon 12.29 3.71 44.14 7.56 0.103 0.064
ImperativeScoreLandkroon 11.92 5.79 29.63 32.02 0.048 0.052
ParadigmScoreLandkroon 11.59 4.36 48.34 10.46 0.093 0.064
SideEffects 11.55 6.73 26.20 33.78 0.034 0.050
HasPointsLandkroon 11.34 4.23 55.46 9.51 0.099 0.064
HigherOrder 9.50 3.89 13.28 11.60 0.020 0.014
Recursive 9.24 3.89 44.55 47.59 0.014 0.017
Nested 8.95 3.10 49.28 47.13 0.015 0.015

Table B.8: Landkroon construct measurements prediction performance.

84

Appendix C

Baseline model average MCC per
paradigm

This appendix contains the average Matthews Correlation Coefficient of the fault-proneness pre-
diction performance results per paradigm over all the projects. The full fault-proneness prediction
performance results can be found online at https://github.com/svenkonings/ScalaMetrics/
tree/master/data/analysisResults/baseline/split-regression.

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectAvrResultsBriand
All
Neutral
OOP
FP
Mixed

Figure C.1: Average Matthews Correlation Coefficient barcharts

85

https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/baseline/split-regression
https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/baseline/split-regression

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectSumResultsBriand
All
Neutral
OOP
FP
Mixed

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectMaxResultsBriand
All
Neutral
OOP
FP
Mixed

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectAvrResultsLandkroon
All
Neutral
OOP
FP
Mixed

Figure C.1: Average Matthews Correlation Coefficient barcharts.

86

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectSumResultsLandkroon
All
Neutral
OOP
FP
Mixed

CommentDensity

CommentLinesOfCode

CouplingBetweenObjects

CyclomaticComplexity

DepthOfInheritance

DepthOfNesting

FanIn
FanOut

LackOfCohesionInMethods

LinesOfCode

NumberOfChildren

NumberOfPatternVariables

OutDegree

OutDegreeDistinct

PatternSize

ResponseForClass

SourceLinesOfCode

WeightedMethodCount

0.0

0.1

0.2

0.3

0.4

0.5

M
CC

objectMaxResultsLandkroon
All
Neutral
OOP
FP
Mixed

Figure C.1: Average Matthews Correlation Coefficient barcharts.

87

Appendix D

Multivariate baseline regression
for objects with metric results

This appendix contains the results for the multivariate regression of the candidate metrics added
to the baseline model, when only considering objects for which the candidate metric has data
(see Table D.1). The full results can be found online at:

1. Zuilhof’s metrics

(a) https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/
multiparadigm-zuilhof/regression/multivariate-baseline-hasdata

2. Construct metrics

(a) https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/
multiparadigm-constructs/regression/multivariate-baseline-hasdata

88

https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/multiparadigm-zuilhof/regression/multivariate-baseline-hasdata
https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/multiparadigm-zuilhof/regression/multivariate-baseline-hasdata
https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/multiparadigm-constructs/regression/multivariate-baseline-hasdata
https://github.com/svenkonings/ScalaMetrics/tree/master/data/analysisResults/multiparadigm-constructs/regression/multivariate-baseline-hasdata

Name Count Precision mean Precision std. Recall mean Recall std. MCC mean MCC std.
Briand’s methodology

NumberOfLambdaFunctions baseline 7 48.57 10.46 63.00 7.16 0.364 0.072
NumberOfLambdaFunctions 7 48.05 10.03 62.38 7.07 0.357 0.062
SourceLinesOfLambda baseline 7 48.57 10.46 63.00 7.16 0.364 0.072
SourceLinesOfLambda 7 47.85 9.66 62.81 6.80 0.356 0.071
LambdaScore baseline 7 48.57 10.46 63.00 7.16 0.364 0.072
LambdaScore 7 48.48 10.39 62.32 7.24 0.361 0.065
LambdaFunctionsUsingOuterVariables baseline 1 70.89 76.71 0.465
LambdaFunctionsUsingOuterVariables 1 67.11 69.86 0.370
LambdaFunctionsUsingLocalVariables baseline 1 57.14 64.00 0.284
LambdaFunctionsUsingLocalVariables 1 62.07 72.00 0.392
LambdaFunctionsWithSideEffects baseline 5 55.63 6.69 54.99 6.91 0.216 0.157
LambdaFunctionsWithSideEffects 5 57.14 9.51 55.18 7.67 0.235 0.195
LambdaFunctionsWithAssignment baseline 1 68.06 63.64 0.346
LambdaFunctionsWithAssignment 1 71.83 66.23 0.411
ImplicitConversions baseline 7 40.51 17.36 54.22 12.65 0.262 0.169
ImplicitConversions 7 40.55 16.61 54.75 12.48 0.264 0.164
ImplicitDefinitions baseline 7 50.63 9.81 64.63 5.91 0.400 0.090
ImplicitDefinitions 7 51.61 8.69 64.05 4.19 0.407 0.077
ImplicitParameters baseline 7 52.16 10.86 58.98 4.63 0.315 0.097
ImplicitParameters 7 52.91 8.26 59.57 2.36 0.327 0.060
UnitVariables baseline 1 75.00 69.23 0.647
UnitVariables 1 75.00 69.23 0.647
FunctionVariables baseline 7 47.47 11.56 55.93 11.23 0.273 0.212
FunctionVariables 7 48.11 9.42 57.05 8.88 0.285 0.181
UsageOfNull baseline 7 50.38 23.79 53.62 18.59 0.228 0.286
UsageOfNull 7 52.57 22.10 53.45 16.37 0.250 0.281
NumberOfReturns baseline 0
NumberOfReturns 0
OverridingPatternVariables baseline 6 59.59 10.80 63.13 4.54 0.314 0.125
OverridingPatternVariables 6 58.27 10.34 62.64 5.12 0.297 0.115

Landkroon’s methodology
NumberOfLambdaFunctions baseline 7 60.53 11.47 68.75 6.39 0.462 0.102
NumberOfLambdaFunctions 7 60.32 12.28 68.76 7.18 0.461 0.112
SourceLinesOfLambda baseline 7 60.53 11.47 68.75 6.39 0.462 0.102
SourceLinesOfLambda 7 60.21 11.97 67.84 6.28 0.455 0.099
LambdaScore baseline 7 60.53 11.47 68.75 6.39 0.462 0.102
LambdaScore 7 60.61 11.72 67.92 6.40 0.459 0.098
LambdaFunctionsUsingOuterVariables baseline 2 68.19 1.47 75.17 9.40 0.463 0.000
LambdaFunctionsUsingOuterVariables 2 68.79 0.62 76.79 7.11 0.479 0.023
LambdaFunctionsUsingLocalVariables baseline 2 71.68 8.62 66.48 4.02 0.373 0.126
LambdaFunctionsUsingLocalVariables 2 71.25 12.37 70.45 3.21 0.385 0.230
LambdaFunctionsWithSideEffects baseline 5 69.20 14.09 67.22 5.67 0.332 0.053
LambdaFunctionsWithSideEffects 5 70.49 15.16 68.49 5.89 0.358 0.093
LambdaFunctionsWithAssignment baseline 2 75.39 23.93 80.79 13.03 0.399 0.021
LambdaFunctionsWithAssignment 2 75.52 23.74 79.28 15.16 0.393 0.029
ImplicitConversions baseline 7 64.18 18.74 69.76 9.63 0.487 0.150
ImplicitConversions 7 63.63 18.38 68.56 10.57 0.476 0.156
ImplicitDefinitions baseline 7 62.30 13.93 68.81 6.38 0.468 0.082
ImplicitDefinitions 7 61.37 13.15 68.74 6.31 0.458 0.064
ImplicitParameters baseline 7 66.94 13.05 70.16 7.62 0.479 0.089
ImplicitParameters 7 66.24 13.68 69.49 7.59 0.469 0.091
UnitVariables baseline 2 70.67 23.80 74.62 8.69 0.584 0.251
UnitVariables 2 69.73 20.18 76.25 6.39 0.586 0.207
FunctionVariables baseline 7 63.30 12.80 67.68 8.71 0.477 0.080
FunctionVariables 7 62.81 12.30 68.28 7.39 0.475 0.062
UsageOfNull baseline 7 63.93 12.02 71.61 7.36 0.415 0.130
UsageOfNull 7 65.56 11.33 70.91 6.61 0.436 0.094
NumberOfReturns baseline 0
NumberOfReturns 0
OverridingPatternVariables baseline 7 71.37 13.82 74.17 10.43 0.459 0.138
OverridingPatternVariables 7 71.39 13.34 75.01 8.65 0.466 0.114

Table D.1: Multivariate regression fault-proneness prediction performance for objects with metric
results.

89

	Introduction
	Background
	Validation methodology
	Implementation
	Evaluating construct usage
	Baseline model
	Metrics tailored to OOP and FP
	Related work
	Conclusion
	Fractional Paradigm Score plots
	Construct measurement results
	Baseline model average MCC per paradigm
	Multivariate baseline regression for objects with metric results

