
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Design, Implementation, and Experimental
Evaluation of Hestia

A General Dyconit Middleware for Publish/Subscribe Systems

Author: Jurre Joost Brandsen BSc (2724088/11808918)

1st supervisor: Prof.dr.ir. Alexandru Iosup
daily supervisor: Jesse Donkervliet, M.Sc.
daily supervisor: Rinse van Hees, M.Sc. (Company: Info Support)
2nd reader: Dr. Animesh Trivedi

A thesis submitted in fulfilment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

February 19, 2024

Abstract

Distributed systems enable online services and applications to scale and dis-

tribute workloads. However, they face the challenge of providing consistency,

the illusion of sequential access, in a distributed environment. Consistency

is essential for reliable and predictable distributed systems that can handle

concurrent data access and updates. However, consistency guarantees are of-

ten imposed by the underlying system, regardless of the application’s specific

needs. Application-centric consistency is a novel perspective on consistency

models that allows applications to define their own consistency policies based

on their requirements and the system’s state. This perspective enables fine-

grained dynamic consistency in software systems composed of loosely coupled

components that communicate through events, which offer benefits such as

scalability, performance, and flexibility, but also pose challenges related to con-

sistency, reliability, and complexity.

This thesis extends the concept of dynamic consistency, which was introduced

by Dyconits, to a broader range of applications. Dyconits are a novel technique

for managing inconsistency in Modifiable Virtual Environments (MVEs), where

users can modify the shared state of the system. However, the question of their

adaptability to various other domains remains largely unexplored. Contexts as

diverse as smart farming, chat rooms, and real-time analysis applications, which

necessitate synchronization of replicated data in the face of lagging services,

present intriguing challenges that Dyconits could potentially tackle. Conse-

quently, the focus of this thesis shifts towards investigating how Dyconits can

be harnessed within event-driven systems to enable optimistic inconsistency

across a spectrum of event types and scenarios.

We present Hestia, a dyconit system that enables fine-grained control over the

consistency levels of normal and priority events in event-driven systems. Unlike

existing approaches that rely on system-level or data-level consistency, Hestia

supports application-centric consistency, which allows the application logic and

semantics to define the consistency requirements. We are the first to design,

implement and evaluate a dyconit system for general event-driven systems.

Hestia employs two general communication patterns that can accommodate

various application contexts and domains, such as smart farming, chat appli-

cation, and real-time analysis. We evaluate Hestia on different communication

patterns, workloads and policies and compare it with baseline systems. Our

results demonstrate that Hestia achieves a 70% reduction in inconsistency for

both event priorities, while maintaining a reasonable throughput with a 45%

decrease. Hestia also adapts to the workload saturation by balancing perfor-

mance and consistency. Furthermore, Hestia enables users to balance consis-

tency, throughput, and overhead according to their preferences and workload

characteristics.

Our research highlights the importance of applying application-centric consis-

tency that meets the specific requirements of event-driven distributed systems,

recognising the diversity of applications and their varying requirements. We

contribute to a comprehensive approach for achieving application-centric con-

sistency in a wide range of contexts.

iv

Plagiarism Declaration

I confirm that all material present in this report, unless explicitly stated, is the

result of my own efforts. No parts of this report are copied from other sources

unless credited and properly cited. The work has also not been submitted

elsewhere for assessment. I understand that plagiarism is a serious issue and

should be dealt with if found. Note that the background section contains parts

from my survey on the application-centric consistency perspective, which is my

own work (1).

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Questions . 4

1.3 Main Contributions . 6

1.4 Structure of the Thesis . 6

1.5 Societal Relevance . 7

2 Background 9

2.1 Introduction to Consistency . 9

2.2 The Conit Consistency Model . 16

2.3 Dyconits . 19

3 Requirements Analysis for Dyconit Systems in Event-Driven Systems 23

3.1 Introduction to Event-Driven Systems . 23

3.2 Methodology for Requirement Analysis . 27

3.3 Real-World Use Cases of Event-Driven Systems 28

3.4 Communication Patterns in Event-Driven Systems 32

3.5 Discussion and Implications of Dyconits in Event-Driven Architectures . . . 35

4 Design of a Generic Dyconit System for Event-Driven Systems 39

4.1 Generic Dyconit Model Requirements . 39

4.2 High-Level Overview of the Generic Dyconit System 44

4.3 Components of the Dyconit System . 46

4.4 Design of Consistency Bounding . 48

4.5 Dynamic Policies . 50

iii

CONTENTS

4.6 Real-time Interactive System Support . 52

4.7 Consistency Model Classification . 53

4.8 Design Process and Alternatives . 54

5 Integrating the Generic Dyconit System in to Event-Driven Systems 55

5.1 The Implementation of Hestia . 55

5.2 Implementation Choices . 66

5.3 Implementation Challenges . 67

6 Evaluation of the Performance of a Generic Dyconit System: Experi-
mental Design and Results 71

6.1 Designing Synthetic Workloads Based on Interviews with Domain Experts . 71

6.2 Experiment setup . 74

6.3 Metrics and Data Collection . 76

6.4 Experiment Deployment . 77

6.5 Experiment Configuration . 78

6.6 Experiment Design . 80

6.7 Experiment Results . 86

6.8 Discussion . 104

7 Conclusion and Future Work 107

7.1 Conclusion . 107

7.2 Future Work . 109

8 Appendix 111

8.1 Email Questions to Industry Experts . 111

8.2 Policy Configurations . 115

8.3 Artifact Appendix . 119

References 123

iv

List of Figures

2.1 A Historic progression of four eras of consistency model research 11

2.2 Comparison between client, data and application-centric consistency per-

spectives . 14

2.3 The taxonomy of application-centric consistency models 15

2.4 Illustration of the effect of setting a numerical error bound in a Conit 17

2.5 Illustration of the effect of setting an order error bound in a Conit 18

2.6 Illustration of the effect of setting a staleness bound in a Conit 18

2.7 Dyconit system architecture. 20

3.1 Kafka cluster architecture. 25

3.2 Star topology of Event-Driven Systems. 33

3.3 Multi-hop communication pattern . 35

4.1 Generic Dyconit system design for Event-Driven Architectures 44

4.2 Dyconit system components. 46

4.3 Sequence diagram of the dynamic topology adaptation mechanism for Dyconits 52

4.4 Sequence diagram of the heartbeat mechanism to monitor the status of nodes

in the global collections. 53

6.1 Star and multi-hop topologies used in the experiments 75

6.2 The effect of Dyconits on the maximum consumer lag for priority and normal

events under a fluctuating workload. 87

6.3 Comparison of average message throughput over time for priority and nor-

mal events, with and without Dyconits enabled. 88

6.4 Maximum consumer lag for star and multi-hop topologies with and without

Dyconits. 90

v

LIST OF FIGURES

6.5 Average message throughput for star and multi-hop topologies with and

without Dyconits. 91

6.6 Average overhead for star and multi-hop topologies with Dyconits. 93

6.7 Distribution of consumer lag for priority and normal events under different

workload situations. 94

6.8 The average message throughput for priority events and normal events over

time for three workloads: undersaturated, fluctuating, and oversaturated. . 95

6.9 The average number of messages exchanged between consumers to synchro-

nise their states over time for priority events and normal events under three

workloads: undersaturated, fluctuating, and oversaturated. 97

6.10 Distribution of consumer lag for priority and normal events with different

policies using the oversaturated workload. 98

6.11 Message throughput of various policies under an oversaturated workload . . 99

6.12 Overhead comparison of different policies for priority versus normal events. 100

6.13 Pareto front representation for priority events under a fluctuating workload. 101

6.14 Pareto front representation for normal events under a fluctuating workload. 103

vi

List of Tables

6.1 Performance metrics for the dyconit system. 76

6.2 Experiment configurations. 81

6.3 Variables and collected metrics for the Optimistic Inconsistency Impact ex-

periment. 82

6.4 Variables and collected metrics for the Topology Impact experiment. 83

6.5 Variables and collected metrics for the Workload Impact experiment. 84

6.6 Variables and collected metrics for the policy Impact experiment. 84

6.7 Variables and collected metrics for the Sensitivity Analysis experiment. . . . 85

6.8 Optimal settings for priority events under fluctuating workloads. The ta-

ble details the most efficient configurations, showcasing their corresponding

maximum inconsistency lag, event and overhead throughputs, as well as the

thresholds and rules employed for each setting. 102

6.9 Optimal settings for normal events under fluctuating workloads. The ta-

ble details the most efficient configurations, showcasing their corresponding

maximum inconsistency lag, event and overhead throughputs, as well as the

thresholds and rules employed for each setting. 104

vii

LIST OF TABLES

viii

List of Algorithms

1 Heartbeat Management . 59

2 Bound Staleness . 60

3 Bound Numerical Error . 62

4 Merge events . 63

5 Calculate Throughput . 69

ix

LIST OF ALGORITHMS

x

1

Introduction

Distributed systems are essential for modern computing, as they allow systems to scale and

distribute workloads across multiple nodes. These systems support various online services

and applications that require high scalability and availability, such as e-commerce and so-

cial networking. However, designing and implementing distributed systems that provide

the necessary levels of reliability, availability, and scalability while maintaining consistency

is a significant challenge (2). In particular, achieving consistency, the illusion of sequential

access, in a distributed environment is a complex task. The problem becomes more chal-

lenging as the number of nodes and the frequency of updates increase (3).

Consistency is a key property of distributed systems that ensures the accuracy, reliability,

and accessibility of the data stored and managed by these systems. However, achieving

consistency is not easy, as distributed systems face various challenges such as network de-

lays and partial failures. To cope with these challenges, different consistency models have

been proposed, each with different trade-offs between consistency and availability (4). Con-

sistency models are a set of rules that govern the behaviour of a distributed system and

define the guarantees provided by the system about the order and visibility of operations

on shared data. Some of the well-known consistency models are strong consistency and

eventual consistency. Strong consistency models, such as linearizability (5), require that all

nodes in the system agree on the order and outcome of operations, and that reads always

return the most recent version of the data. However, strong consistency models are often

hard to achieve in practice, as they impose high performance and availability costs. More-

over, some theoretical impossibility results limit the design space of distributed systems.

For example, the Fischer-Lynch-Paterson result (6) shows that consensus is unattainable

in a fully asynchronous message-passing distributed system with even a single crash failure

1

1. INTRODUCTION

possibility. Similarly, the CAP theorem (7) proves that a distributed system cannot si-

multaneously guarantee consistency, availability, and partition tolerance. Therefore, many

applications and scenarios need weaker or more flexible consistency models that can tol-

erate some inconsistency in exchange for higher availability or lower latency. As a result,

the notion of consistency has been weakened and blurred over the years by the emergence

of numerous theoretical boundaries, leading to an explosion of different consistency mod-

els (4). New consistency models relax some requirements of strong consistency models,

such as atomicity or order of operations, while preserving some intuitive properties or

causal dependencies among operations.

One domain that demands both high consistency and high performance in distributed

systems is the online gaming industry. This domain faces unique challenges in balancing

the trade-offs between consistency, latency, and performance (8). Most existing approaches

use data-centric consistency models that focus on synchronising replicas and ordering op-

erations (9). However, these models have drawbacks in their ability to measure and limit

the inconsistencies that may arise. To overcome these drawbacks, Donkervliet et al. in-

troduced dynamic consistency units (Dyconits) (10), a middleware for Modifiable Virtual

Environments (MVEs) that uses a fine-grained continuous consistency model. This model

is based on a definition of consistency that was first proposed in TACT (11), which uses

various boundaries to enforce consistency bounds among replicas. Dyconits allow game

developers to divide the game world and its objects into units, each with its own bounds,

which can be dynamically and optimally adjusted by the middleware. Dyconits enable

games to scale by bounding inconsistency in MVEs, while reusing the existing game code-

base and network stack. The evaluation of Dyconits showed that they can support 40%

more concurrent players and reduce bandwidth up to 85% with only minor code adjust-

ments to the game (10).

Dyconits have gained prominence as effective tools within the online gaming industry,

demonstrating their capacity to tackle consistency challenges in complex virtual environ-

ments. However, the implications of Dyconits extend far beyond gaming, showing promise

in resolving issues of consistency in a multitude of other domains. The foundational princi-

ples of dynamic consistency units offer potential applications in various distributed systems

where maintaining a delicate balance between consistency, latency, and performance is cru-

cial. Consider real-time use cases like chat applications, Internet of Things (IoT) applica-

tions, and data analytics, which could all benefit from Dyconits’ capability to dynamically

2

1.1 Problem Statement

manage inconsistency and ensure synchronised updates. By generalizing the Dyconits con-

cept, the fine-grained continuous consistency model can be adapted to diverse distributed

systems by tailoring boundaries and metrics to suit specific application demands. Further

investigation is imperative to evaluate the viability and efficacy of Dyconits in these con-

texts. Additionally, an exploration of potential trade-offs and challenges arising from their

application beyond the gaming industry is essential to comprehensively understand their

scope.

1.1 Problem Statement

Distributed systems have become increasingly popular due to their ability to scale and dis-

tribute workloads across multiple nodes. However, achieving consistency in a distributed

environment is a challenging problem. Traditional consistency models, such as strong or

eventual consistency, may not be optimal for all use cases. In recent years, researchers

have proposed new approaches, such as Dyconits, that provide a fine-grained solution for

dynamically and optimistically ensuring consistency while meeting specific performance

requirements (1).

One of the areas where fine-grained dynamic consistency can be applied is in software

systems that consist of loosely coupled components that communicate through events.

These are messages that represent a significant change in state and enable high scalability,

performance, and responsiveness, as well as decoupling and flexibility among components.

However, such systems also pose challenges in terms of consistency, reliability, and com-

plexity. Especially in the scenario when multiple consumers are subscribed to the same

event. Fine-grained dynamic consistency is a promising approach for addressing the con-

sistency challenges in this context. Its ability to dynamically and optimistically ensure

consistency while meeting specific performance requirements makes it an area worth ex-

ploring in research to evaluate its effectiveness.

Dyconits have been specifically developed for managing complex interactions within MVEs.

Their use in other domains remains unexplored. In this research, we set out to address

two primary objectives:

1. Assessing Dyconits’ versatility: Our aim is to understand the potential of Dy-

conits in contexts beyond gaming. This will involve studying any inherent limitations

and gauging their adaptability to different scenarios.

3

1. INTRODUCTION

2. Exploring optimal utilisation strategies: We will investigate how to best harness

Dyconits to ensure consistency for various types of priority events, taking into account

different topologies, policies, and workloads.

Building on the exploration of Dyconits’ versatility and optimal utilization, our research

delves deeper into the challenges posed by event-driven systems. We propose to build a

system that uses the Dyconit consistency model for event-driven scenarios. This system

seeks to address the challenges in such contexts by introducing a flexible consistency model

tailored to adapt to diverse use cases.

To accomplish our objectives, we will design and develop a Dyconits library with core

functionalities that can be easily extended to meet the specific needs of users. The library

will be designed for use in asynchronous event-driven distributed systems, which are widely

used in industry. We will evaluate the effectiveness of our Dyconits library by testing its

performance in a variety of use cases. Ultimately, we aim to provide a reliable and consis-

tent approach to managing interactions between systems, improving the overall efficiency

and effectiveness of distributed systems in a range of industries.

1.2 Research Questions

In this work, we aim to generalize the concept of Dyconits and apply it to other domains

where event-driven systems are prevalent, such as Internet of Things (IoT), real-time ana-

lytics processing, and chat applications. We hypothesize that Dyconits can provide benefits

in terms of consistency and performance for these domains as well. To test this hypothesis,

we propose the following research questions:

(RQ1) State-of-the-art: What are the common requirements in event-driven sys-

tems that can inform the design of a generic Dyconit system?

Understanding the common requirements in event-driven systems is crucial, as it pro-

vides valuable insights into the fundamental elements needed for successful system

design and implementation. This research question is challenging due to the diverse

nature of event-driven systems, encompassing different communication patterns and

use cases. Identifying the common requirements necessitates comprehensive analysis

and synthesis, considering the trade-offs between generality and efficiency in design-

ing a generic Dyconit system that can accommodate the unique characteristics of

event-driven systems.

4

1.2 Research Questions

(RQ2) Design of the system: How to design a generic Dyconit system for event-

driven systems?

Research into the use of Dyconits in MVEs has yielded favourable results. These

results encourage exploration of the possibilities of extending the application of Dy-

conits to other domains where scalability and consistency are also of critical concern.

However, designing a generic Dyconit system for various application domains poses

significant challenges. This is because the concept of Dyconits is new and further re-

search is needed to fully understand its potential for application in various domains.

Moreover, the design of a generic Dyconit system must take into account the different

requirements and needs in different domains.

(RQ3) Implementation of the system: How to integrate a generic Dyconit system

into event-driven systems?

The integration of a general Dyconits into distributed systems is crucial, as it can

extend the applicability of Dyconits across a wide range of domains, enabling greater

scalability and consistency while maintaining high performance. However, the task of

integrating such a system can be challenging because distributed systems are complex

and vary widely in their architecture and functionality.

(RQ4) Evaluation of the system: How to evaluate a generic dyconit system for

event-driven system?

Optimistic inconsistency lets the system handle temporary data mismatches until

they are fixed. This can improve the performance of the system by reducing the

latency and overhead of sending messages, as well as increasing the throughput and

scalability of the system. However, implementing optimistic inconsistency also poses

some challenges, such as how to evaluate the system under different conditions and

scenarios, how to configure the system with different policies, workloads, and topolo-

gies, and how to understand the trade-offs and behaviour of the system. This research

tackles these challenges with experiments and analysis using the Generic Dyconit

System prototype and relevant metrics and NFRs.

By ensuring that Dyconits can be used in areas besides MVEs, this work has the potential

to directly impact on the choices companies make regarding existing consistency models.

5

1. INTRODUCTION

1.3 Main Contributions

By addressing the research questions presented above, we make the following contributions

(Cs).

C1 Analysis of three different use cases within the domain of agriculture, finance and

instant messaging, where we identified the shared requirements inherent in a partic-

ular subset of event-driven systems: replica consumers. This analysis serves as the

basis for developing the overall Dyconit system for event-driven systems, specifically

tailored to meet these requirements. (Section 3)

C2 Designed a general Dyconit system that can be integrated across various domains,

such as agriculture, finance, and instant messaging. This system is the first to extend

the Dyconit consistency model. It also addresses the challenge of replica consumer

divergence, which is a common issue in event-driven systems. (Section 4).

C3 Development of the Hestia prototype system. This system leverages the Dyconit con-

sistency model to introduce an optimistic inconsistency strategy designed specifically

for the challenge of replica consumer divergence within event-driven systems. Hestia

enables the use of customisable consistency boundaries and policies, extending the

scope of the Dyconit consistency model to a wide range of domains not previously

explored (Section 5).

C4 Evaluation of Hestia showing the trade-offs of embracing optimistic inconsistency

within the context of event-driven systems characterised by differences between replica

consumers. Our experiments show that Hestia successfully mitigates inconsistency

through dyconit configuration, while traditional approaches cause replicas to diverge

under fluctuating workloads (Section 6).

1.4 Structure of the Thesis

This thesis is organized as follows: Chapter 2 provides the necessary background of the

events that motivated the development of the generic Dyconit system for event-driven sys-

tems. It analyses the evolution of consistency models, introduces the concept of application-

centric consistency, and discusses Conits and Dyconits as well as their alternatives. Chap-

ter 3 analyses the requirements of event-driven systems and presents three use-cases of

applications that adopt such systems, identifying common non-functional requirements for

6

1.5 Societal Relevance

these applications. Chapter 4 describes the design of the generic Dyconit system. Chap-

ter 5 explains the implementation details of the prototype, Hestia. Chapter 6 evaluates

the performance and effectiveness of Hestia. Finally, Chapter 7 summarises the main

contributions of this thesis and suggests directions for future work based on this thesis.

1.5 Societal Relevance

In this research, we aim to develop and evaluate a generic Dyconit system for event-driven

systems, extending the previous work by Donkervliet in the MVE domain (10). Dyconits

are a novel approach to achieve application-specific consistency models that could have

significant societal impact. Our research addresses the challenge of selecting a suitable

consistency model for modern applications, which is often constrained by the one-size-fits-

all paradigm of existing solutions. By dynamically adjusting the consistency boundaries,

dyconits enable solutions that adapt to the evolving requirements of distributed computing.

Furthermore, consistency models that are customised to each application have the potential

to lower the energy consumption of current technologies, contributing to environmental

sustainability. This is because application-specific consistency models can optimise the

trade-off between performance and consistency, reducing the amount of communication

and computation required to maintain a consistent state across distributed nodes. By

using dyconits, such an application can dynamically adjust the consistency boundaries

according to the type and context of the data, potentially saving energy and resources.

7

1. INTRODUCTION

8

2

Background

In this chapter, we explore consistency in distributed systems, from its evolution to the

application-centric perspective (Section 2.1). We introduce Conits, a model that man-

ages inconsistency in terms of staleness, order, and error (Section 2.2). Finally, we delve

into Dyconits, an extension of Conits, which allow applications to dynamically adjust the

consistency level based on their current context and preferences (Section 2.3).

2.1 Introduction to Consistency

The word “consistency” is etymologically derived from the Latin word “consistentia”, mean-

ing “standing together”, and it initially referred to the firmness of matter (12). Later, it

evolved to signify agreement, steady adherence to principles, and harmonious connection

between the parts of a system. Consistency with respect to data means that a consistent

state requires that all relationships between data items and replicas to be in agreement

and accurately reflect the intended state (13). This definition of data consistency aligns

with the original meaning of the Latin word “consistentia”, signifying agreement as the

emphasis is placed on the correctness of the data.

Consistency in distributed systems has been researched for many years and has become

a large field of interest. The research into consistency can be divided into four distinct

historical periods: the pre-consistency era, the traditional consistency era, the optimistic

consistency era, and the tunable consistency era (1). The pre-consistency era was primarily

characterized by an emphasis on shared memory architectures and multi-core processors,

while later eras such as the optimistic and tunable consistency eras are global in scope.

9

2. BACKGROUND

This section provides a brief overview of each historical period, along with the correspond-

ing well-known consistency models, to create a context for the remainder of this thesis.

However, for a more in-depth exploration of consistency models, the reader may consult

one of the many surveys on consistency models and mechanisms, as this section only gives

a brief overview (4, 13, 14).

2.1.1 Consistency Models in Distributed Systems

Research on consistency in distributed systems has resulted in many consistency mod-

els. The large number of consistency models in distributed systems can be attributed to

important theories like the CAP theorem, PACELC and ACID properties. The CAP the-

orem (15) states that a distributed system cannot possibly guarantee all of Consistency,

Availability, and Partition Tolerance simultaneously. This theorem states that in the pres-

ence of a network partition, the system must choose between maintaining consistency or

availability. Therefore, different consistency models offer different levels of trade-offs be-

tween consistency and availability. Moreover, the PACELC theorem (16) extends the CAP

theorem by introducing the concepts of latency and consistency tradeoffs. The PACELC

theorem states that for partitioning, a system must choose between: 1) availability over

consistency with low latency (PA/EL), 2) consistency over availability with low latency

(PC/EC), 3) availability over consistency with eventual consistency (PA/EC), or 4) con-

sistency over availability with eventual consistency (PC/EL). Finally, ACID (atomicity,

consistency, isolation, durability) is a set of properties that ensure reliable processing of

database transactions (17). While ACID properties are highly desirable in distributed sys-

tems, they often come at the expense of availability and partition tolerance.

The availability of different consistency models allows distributed systems to make the

right trade-offs based on their specific usage and requirements. Therefore, understanding

these trade-offs and choosing the appropriate consistency model is crucial for designing

and implementing efficient distributed systems.

2.1.2 Evolutional Progression of Consistency Models

Distributed systems have evolved over time to offer different levels of consistency, depend-

ing on the needs and preferences of the applications that use them. Figure 2.1 shows the

four main stages of this evolution: pre-consistency, traditional consistency, optimistic con-

sistency, and tunable consistency. Each stage has its own characteristics and challenges,

10

2.1 Introduction to Consistency

Snapshot isolation (SI)

2000s 2010s 2020s

 1978
LC Logical Clocks (LC) 1988

VC

 1995
SI

 1976
 Predicate Locks & Transactions

 2012
CO Strong 1990

 Linearizablilty

Computer architecture

Synchronized

Causal (C) 1990
 Causal

 2005
TC

 2011-2015
 CC+, RTC, BoC, OC

 2017
 TCC, CS, GSC & CCC

2004
 Transactional Coherence

 2000
 Location consistency

Weak

Session guarentees

 1986
 Weak consistency

2005
 Quiescent consistency

Staleness

Fork (F)

 1997
 Delta

 1999
 Timed

2005
 Timed Serial &

K-Quorums

2011
 Δ / γ atomicity & BulkSC

Static coordination avoidant

 1986
 Weak consistency

2005
 Quiescent consistency

 1994
 Session Guarentees

 1988
 Shared Memory &

 PRAM

1999
 Cache Coherence

 1990 – 1991
(lazy) release &

 Entry consistency

 1996
 Scope &

AURC

 2002
 FL

 2006-2007
 FSC & Fork*

2010-2011
 FJ & WFL

2015
 OBFT

Pre-consistency
O

ptim
istic consistency

Traditional consistency
Tunable consistency

Mutual Exclusion

ACID
(1992)

BASE
(2008)

CAP
(2000)

PACELCA
(2012)

FLP-impossibility
(1983)

CALM
(2019)

 2006
SSI

1979
Serializability &

Sequential

1965
 semaphores

 1992
 Hybrid

Static optimistic

Dynamic optimistic

 2013
PSI

 2008
 EC Eventual

2007
 VFC3

2020
 OCC

2019
 Dyconits,

 IDEA

State
consistency

Application
consistency

Operation
consistency

 1995
SI

2019 - 2021
 SECRO, ECRO

 2011
 SEC

2016
𝛿-CRDT &

JSON-CRDT

 2021
 LSCRDT

2020
 Strict Timed Causal Consistency

 2002
QoS

 2013
 Harmony,
Expl. con

2009-2010
 CR & AARC

 2012
 RedBlue

 2018
 PoR

 2002
 Conits

1960s 1970s 1980s 1990s

Figure 2.1: A Historical progression of consistency models includes the pre-consistency era
(blue) with a focus on mutual exclusion and ordering, the traditional era (green) emphasizing
strong consistency, the optimistic era (red) valuing high availability with relaxed consistency,
and the tunable era (purple) balancing user-defined consistency needs.

as well as advantages and disadvantages. In general, the trend has been towards more

flexible and adaptable consistency models that can balance performance, availability, and

correctness. In the following sections, we will describe each of these stages in more detail

and discuss their implications for distributed systems design and implementation.

• Pre-consistency Era: This era dealt with the problems of mutual exclusion, clock

synchronization, and event ordering in distributed systems without a central author-

ity (18, 19). It introduced the concepts of Logical Clock (LC) and Vector Clock

(VC), which detected conflicts between data replicas and laid the foundation for

models based on causal operations or states.

• Traditional Consistency Era: This era aimed to achieve strong consistency, which

ensured that all data replicas remained identical at all times. It utilized the mecha-

nisms from the previous era, such as vector clocks, to implement consistency models.

11

2. BACKGROUND

For example, causal consistency ensured that all replicas observed operations in a

causal order (20). However, these models sacrificed availability and performance for

correctness, resulting in high coordination costs among replicas.

• Optimistic Consistency Era: This era relaxed the consistency requirements for

better availability and performance. It recognized that some applications could tol-

erate temporary inconsistencies as long as they were eventually resolved. It proposed

ideas like eventual consistency (21), which guaranteed that all replicas would con-

verge to the same state if no new updates occurred. While these models provide more

flexibility and scalability, they also introduce challenges, such as resolving conflicts

or reconciling divergent states. Therefore, designing a consistency model requires a

trade-off between consistency, availability, and performance (22, 23), depending on

the specific requirements of the application.

• Tunable Consistency Era: This era shifted the focus from universal data con-

sistency to application-specific consistency. It allowed different levels of consistency

depending on the application’s needs and user preferences. It designed models like

RedBlue (24) consistency or CRDTs (25), which took into account factors such as

operation commutativity, invariant maintenance, and user perception. This era pri-

oritized adaptability and scalability over strict consistency, emphasizing the unique

requirements of each application.

Overall, the tunable consistency era marked a significant shift in distributed systems re-

search, from a one-size-fits-all approach to more fine-grained consistency models based on

application semantics and characteristics. This shift enables more flexible, scalable, and

adaptable systems that can better meet the specific requirements of different applications.

2.1.3 Application-Centric Consistency Models

Traditionally, consistency models have been considered from two different perspectives (9).

The most intuitive perspective is data-centric consistency. Data-centric consistency is a

model that focuses on maintaining consistency in the data itself. In this approach, all

nodes in the system access the same data, and updates or changes to the data are im-

mediately propagated to all other nodes. This ensures that all nodes have a consistent

view of the data at all times. Examples of data-centric consistency models include strong

consistency, where all nodes see the same data at the same time, and eventual consistency,

where updates may take some time to propagate to all nodes.

12

2.1 Introduction to Consistency

Client-centric consistency, on the other hand, focuses on ensuring that clients always have

a consistent view of the data, regardless of the actual state of the data on each node. In

this approach, each client maintains its own view of the data, and any updates or changes

are sent to all nodes. This ensures that each client sees the same version of the data,

regardless of any inconsistencies that may exist on individual nodes. Examples of client-

centric consistency models include read-your-writes consistency, where a client always sees

its own updates immediately, and monotonic read consistency, where a client never sees

older versions of the data after seeing a newer version (7).

Recently, we introduced a third perspective, known as application-centric consistency. Un-

like the previous two perspectives, this model focuses on the requirements of the specific

application rather than the data or the clients (1). In other words, the consistency guaran-

tees are tailored to the application’s needs rather than being determined by the underlying

system or network. This approach enables greater flexibility and performance optimiza-

tions, as well as more nuanced consistency guarantees that can better balance trade-offs

between consistency and other factors such as availability and performance. However, it

also introduces greater complexity and requires more careful consideration of the specific

application requirements.

Figure 2.2 illustrates the differences between the three consistency perspectives described

above. To illustrate what we mean by application consistency, let us consider a hypotheti-

cal scenario of a software developer who is designing a distributed system for a ride-sharing

application. The developer faces a trade-off between ensuring that the data is consistent

across all nodes in the system, and achieving high performance and availability. Using tra-

ditional consistency models that focus on the consistency of the whole system might result

in poor performance or availability. Alternatively, the developer could use an application-

centric consistency model that adapts to the specific needs of the ride-sharing application.

For instance, the developer could prioritize strong consistency for critical operations such

as matching riders with drivers or calculating fares, ensuring that these operations take

no more than a second to complete, while allowing for weaker consistency for less critical

operations such as displaying ride history, which can take several seconds up to a minute.

By doing so, the developer can optimize performance, availability, and scalability for the

ride-sharing application.

13

2. BACKGROUND

put (k, v)

Client

Operation Operation Operation

put(k, v) get(k)get(k)

Client/operation
consistency

Replica Replica

Client

Operation Operation Operation

Replica Replica

put(k, v) get(k)get(k)

put (k, v)

Application consistency

get (k)

Data/state consistency

Local store

Client/operation
consistency

put (k, v)

Eventual

Strong

get (k)

Figure 2.2: The difference between data-centric (green), client-centric (red) and the novel
application-centric (blue) perspectives of consistency models in distributed systems.

The application-centric consistency perspective distinguishes four subcategories: static,

dynamic, coordination avoidant and optimistic.

• The static subcategory: In this category of consistency models, software engineers

specify the level of consistency for each operation or a group of operations (i.e., by

using bounds) in advance, without the possibility of changing said bounds or the

consistency level during the execution of the application.

• The Adaptive subcategory: This category focuses on models that are designed

to allow consistency models to change dynamically based on various factors. These

factors may include user preferences, policies, or conditions such as network latency

or data availability.

• The Optimistic subcategory: Consistency models in this category avoid unnec-

essary synchronisation overhead by allowing for temporary inconsistencies within set

bounds or probabilities. This trade-off gives more flexibility and performance opti-

mization. Optimistic consistency is useful in systems that need high scalability and

availability, but can allow some temporary inconsistency.

14

2.1 Introduction to Consistency

D
ynam

icSt
at

ic

Coordiantion avoidant

Optimistic

SCA

SO DO

DCA
CRDTs
ECRO
SECRO
RedBlue
PoR
Explicit Consistency

Quality of Service
Vector Field Consistency
Conits

Harmony
IDEA
Consistency Rationing
Dyconits
AARC

Figure 2.3: A taxonomy of application-centric consistency models based on their static or
dynamic nature and their coordination avoidant or optimistic behaviour.

• The Conflict-free subcategory: This subcategory uses invariant or coordination-

free mechanisms to avoid conflicts and minimize communication between nodes. Oc-

casionally, it may need limited coordination for a few operations to resolve conflicts.

Coordination avoidant consistency is relatively inflexible in terms of runtime flexi-

bility because the data structures and algorithms have the consistency guarantees

built into them. This leaves little room for adjustments or changes during execution.

The software engineer still needs to know and choose the right data structure and

algorithm that are consistent with the application logic.

In Figure 2.3, the taxonomy of application-centric consistency models is shown. In this

taxonomy, the subcategories ‘static’ and ‘dynamic’ and ‘coordination avoidant’ and ‘opti-

mistic’ are orthogonal to each other. This is because we have observed that the models

previously classified as ‘novel’ consistency models can be categorized as either static or

dynamic, and either coordination avoidant or optimistic. This taxonomy provides a useful

framework for comparing and contrasting the different approaches to consistency from the

application-centric perspective, emphasizing their distinctive features and commonalities.

15

2. BACKGROUND

2.2 The Conit Consistency Model

This section introduces the Conit consistency model (11), which is a key concept for this

thesis. The thesis proposes a generalised version of the Dynamic Conit consistency model,

which is based on an adaptation of the original conit model called Dyconit. To appreciate

the novelty and benefits of the proposed model, it is essential to first review the basic

principles of the Conit model.

2.2.1 Continuous Consistency

In 2002, Yu and Vahdat (11) proposed a novel approach to defining inconsistencies using

three axes: numerical error, staleness, and order error, which form continuous consistency

ranges. To quantify and bound inconsistency between nodes, the Conit consistency model

allows systems to define an arbitrary number of integer bounds in the domain [0,∞). Ev-

ery operation, whether read or write, indicates if it affects or depends on one or multiple

Conits. Inconsistency is quantified over updates, and writes are also called updates. The

Conit model allows consistency to vary between the extremes of linearizability and even-

tual consistency. The Conit consistency model guarantees that the inconsistency of the

data presented to the user never exceeds the configured value. If the bounds are exceeded,

synchronisation between nodes is required before the operation can be completed. Syn-

chronisation guarantees that the system consistency stays within bounds from the user’s

perspective and involves communication of all updates between nodes, but no updates are

discarded. The system is fully consistent when all nodes have seen all updates.

In terms of specifying inconsistency tolerance, applications can use different approaches.

For example, measuring inconsistency in terms of numerical deviations is useful for data

with numerical semantics, such as a stock market application. Numerical deviation can

also be understood in terms of the number of updates that have been applied to a given

replica but have not yet been seen by others. Staleness deviations relate to the last time a

replica was updated. In some applications, ordering deviations are allowed, as long as the

differences remain bounded. Tentatively applying updates to a local copy and awaiting

global agreement from all replicas before making them permanent is one way to handle

ordering deviations.

16

2.2 The Conit Consistency Model

Node A

w1, place order stock XYZ (+10)

w2, place order stock XYZ (+10)

w3, place order stock XYZ (+10)

w4, place order stock XYZ (+10)

 40 > 30, push writes

Node B

 w1, w2, w3, w4

Numerical error = 30
tim

e

Figure 2.4: Illustration of the effect of setting a numerical error bound in a Conit

2.2.2 The Notion of a Conit

Yu and Vahdat (11) proposed a way of defining inconsistencies through the concept of a

consistency unit, which they call a conit. A conit serves as the unit for measuring consis-

tency and its definition is flexible, allowing programmers to define it based on their needs.

Examples of Conits can range from shares in a stock exchange to seats on an airplane.

To gain a more comprehensive understanding of the impact of each of the three metrics

used in a conit, an illustrative case is explored, involving the application of Conits within a

hypothetical stock market. We assume that the stock market can detect numerical devia-

tions, staleness deviations, and order errors and can specify the maximum acceptable range

of inconsistency for each metric. In this example, a Conit is shared between two nodes,

A and B. Both nodes maintain a log of Conits, where each conit represents a contiguous

segment of the database containing the latest prices of stocks.

2.2.2.1 Numerical Error

The numerical error of a node is the sum of the weights of writes that it has not seen,

adjusted by a global factor. Nodes share their numerical error bounds with others and

propagate writes to keep the error below the bound. The propagation decision is based on

local information only. Figure 2.4 shows an example of setting a numerical error bound.

Two database replicas log transactions from a stock market application. Node B sets a

bound of 30 stocks, meaning that the unseen writes cannot exceed 30 shares in total. A

client submits buy orders for 10 shares of a stock to node A. Each order adds a weight of

10. The first three orders are allowed without communication. The fourth order exceeds

the bound, so node A must send its writes to node B before accepting more orders.

17

2. BACKGROUND

Node A

WA1, place order stock XYZ (+10)

 commit WA1, WA2, WB1

Node B

 commit WA1, WA2, WB1

Order error = 0

tim
e

WB1, place order stock ABC (+10)

Order error = 3

WA2, place order stock XYZ (+10)

Figure 2.5: Illustration of the effect of setting an order error bound in a Conit

2.2.2.2 Order Error

The order error of a node is the number of writes that can be reordered without affecting

the data consistency. Nodes set their order error bounds and commit writes to agree on

their order when the bounds are exceeded. The system can use any algorithm to commit

writes. Figure 2.5 shows an example of setting an order error bound. Two replicas log

transactions from a stock market application. Node A sets a bound of 3 and node B sets a

bound of 0. Node A receives an order for 10 shares of ABC, which increases its order error

to 1. Then, node A and B receive two orders at the same time. Node A gets 10 shares of

ABC, while node B gets 10 shares of XYZ. Node A’s order error becomes 2, while node

B ’s order error becomes 1. This violates node B ’s bound, so it must communicate with

node A to commit the writes and establish a total order. After the commitment, the order

errors are reset to zero.

2.2.2.3 Staleness Error

Node A

W1, place order stock XYZ (+10)

Node B

Pull writes (W1, W2, W3)

staleness bound = 60ms

tim
e

in
 m

s

W2, place order stock XYZ (+10)

40

60

0

20

W2, place order stock XYZ (+10)

Figure 2.6: Illustration of the effect of setting a staleness bound in a Conit

18

2.3 Dyconits

The staleness error of a node is the time difference between its latest update and the most

recent update in the Conit. Nodes set their staleness bounds and pull updates from other

nodes when the bounds are reached. The Conit model allows the system to choose any

method to pull updates. The original paper used a pull-based approach that blocked the

node until it received the updates. Figure 2.6 shows an example of setting a staleness

bound. The vertical axis is time in milliseconds. Node B sets a bound of 60 ms, meaning

that it must pull updates from node A if it has not seen any for 60 ms. Node A receives

a write every 20 ms. After the third write, node B ’s bound is exceeded, so it initiates the

pull process.

2.3 Dyconits

The Conit consistency model, which we discussed in the previous section, defines inconsis-

tencies along three axes. However, this model has some limitations when applied to large

distributed systems, as Donkervliet (26) pointed out. Specifically, the Conit model does

not handle nodes joining and leaving the system dynamically, assumes that clients can

only update state speculatively, ignores the heterogeneity of nodes, and lacks scalability.

To overcome these challenges, Donkervliet et al. introduced Dyconits (10), a modified

version of the Conit model that addresses the identified issues.

Donkervliet’s team used Minecraft-like games, known as Modifiable Virtual Environments

(MVEs), as a vehicle to research optimistic bounded inconsistency. MVEs are particularly

relevant for this research because the gaming industry is a major contributor to the devel-

opment and advancement of large-scale distributed systems (27, 28, 29).

Dyconits is a novel model for managing inconsistencies in large-scale distributed systems,

which introduces the concept of dynamic Conits, known as dyconits. These are consis-

tency units that represent arbitrary subsets of the game state. It tackles the challenges

encountered by the original Conit consistency model by serving as an intermediary layer

between the game-code and networking layers of the MVEs. Specifically, the Dyconits mid-

dleware employs optimistically bounded inconsistency, which optimizes the consistency of

the system and the efficiency of its operations. The outcome of deploying the Dyconits

middleware is an increase in the number of concurrent players by up to 40% and a reduction

in network bandwidth usage by up to 85%, all accomplished through minimal alterations

to the pre-existing game-code.

19

2. BACKGROUND

partition
state

Dyconit
policy

staleness: 1000
numerical: 1

client:

game state

game simulators
world

simulation
player

simulation
NPC

simulation

0.8

Dyconit middleware

Modifiable Virtual Environment

networking

client:
staleness: 0
numerical: 0

 Dyconit "Player One"

3

2

Legend:

quantify
inconsistency

update
bounds

state updatecontrol flowdata flow

1

4 5 6

7

Figure 2.7: Dyconit system architecture. The figure shows how the Dyconit system acts as a
middleware between the MVE server and the clients, without requiring any modifications on
the client-side. The system dynamically quantifies and bounds inconsistency using dyconits,
which are subsets of the virtual world that have different consistency requirements. The
system updates the inconsistency bounds based on the changing interests of each client and
forwards state updates only when the bounds are exceeded.

2.3.1 Dyconit System Design

In this subsection, we will delve into the system design of Dyconits. The system design is

focused on fulfilling five primary requirements. These requirements have been formulated

with the goal of addressing the limitations of the Conits consistency model. First, it needs

to reduce system-wide network usage to prevent scalability bottlenecks (R1). Second,

the system needs to quantify and bound optimistically the inconsistency of the virtual

environment (R2). Third, it needs to allow fine-grained control over system inconsistency

to manage different types of user interest (R3). Fourth, the consistency bounds need to

be modified dynamically to prevent decreasing gameplay experience (R4). Finally, the

system must be simple yet flexible to act as middleware in distributed ecosystems (R5).

The fulfilment of R5 is exemplified by Figure 2.7, which depicts the middleware capabilities

and flexibility of the Dyconit system in distributed ecosystems. The Dyconit middleware,

shown in blue in the figure, acts as a mediator between the MVEs existing networking and

20

2.3 Dyconits

simulation layers, without any modifications on the client-side. The dyconit system inter-

acts only with the MVE server and dynamically quantifies and bounds inconsistency using

dyconits. Incoming state updated are directly queued (1) for processing by the game’s

simulators (2). However, the resulting state updates (3) are no longer sent directly to

the clients. Instead, they first pass through the Dyconit system. The system quantifies and

bounds inconsistency through the use of dyconits (R2). The subsets (i.e., partitions) are

created dynamically (4) by the Dyconit system using the selected policy. Similarly to the

Conit concept, each dyconit is capable of bounding the staleness, numerical inconsistency,

and order inconsistency to provide inconsistency bounds for player avatars, virtual-world

objects, or any combinations of these. The system updates inconsistency bounds dynam-

ically (5), based on the changing interests of each player. To bound inconsistency, the

system quantifies the inconsistency caused by each state update (6), forwards it to the cor-

responding dyconit, and evaluates the consistency requirement for each client. If a client’s

inconsistency bounds are exceeded, the system forwards all state updates to the client (7).

Network bandwidth consumption is reduced in two ways (R1): First, the system merges

messages with the same state, allowing for large reductions in bandwidth usage for state

that is modified frequently. Second, queuing state-updates allows for batching, reducing

system-level overhead such as packet headers.

Bounding the inconsistency is optimistic because the MVE does not reduce availability

while synchronising state updates (R2). To better understand why bounding the incon-

sistency is optimistic, let us consider a situation where a client has reached its staleness

limit. The staleness limit is a threshold that determines how long a client can go with-

out updating its information. If the client’s information is not updated, it may become

inconsistent. However, updating the information takes time due to network delays and

processing delays, which can cause the time between sending the message to the system

and it being processed by the client to exceed the staleness limit. To avoid this issue, the

system can set the staleness limit to the maximum latency that the client can tolerate and

deduct the estimated network and processing delays.

To allow for fine-grained control over the inconsistency (R3), the Dyconits system man-

ages each dyconit dynamically and automatically. Furthermore, dyconits are re-configured

dynamically (R4) to match consistency restrictions that benefit each player. To achieve

this, the Dyconit systems allow programmers to specify policies (R5). Policies are sets

21

2. BACKGROUND

of rules that define consistency requirements for each dyconit. The Dyconits middleware

then enforces these policies to dynamically adjust dyconit configurations based on player

needs. Each Dyconit policy can affect the operation of Dyconits in three areas. First,

the policy determines how the global state is partitioned across dyconits. Second, the

policy determines the weight of individual state-updates; accumulation of weight beyond

the bounds leads to synchronisation. Third, the policy can re-configure dyconit bounds

for each player, based on player state and the dynamic system workload.

2.3.2 Adaptability, Extensibility, and Generality of Dyconits

In this thesis, we explore the use of the Dyconit system, a fine-grained consistency model for

distributed systems, and evaluate its performance and adaptability under various scenarios.

The Dyconit system is an instance where the application-centric consistency perspective

is employed, offering a nuanced approach that is dependent on environmental factors or

particular applications that may offer other types of consistency. As such, it is part of

a small group of consistency models that have adopted this perspective. However, the

field is seeing progress in this area, as some recent works have advocated for the creation

of systems that can adjust service level objectives (SLOs) as resources overload or tasks

lag (30). The Dyconit system demonstrates the feasibility of this approach by adopting

policies that adapt to real-world circumstances, which conceptually support the vision of

adapting SLOs to changing circumstances. Moreover, Donkervliet et al. argue that this

system’s mechanisms and architecture could be extended to other domains, although they

leave this conjecture to future work (10). This presents an opportunity to explore the

applicability of the Dyconit system to different domains and evaluate its effectiveness.

We aim to investigate the feasibility and performance of using the Dyconit system in a

distributed system for a specific domain under various conditions. Our study seeks to

provide insights into the potential of this system’s policies and mechanisms to support

fine-grained consistency and adaptability in distributed systems beyond gaming

22

3

Requirements Analysis for Dyconit
Systems in Event-Driven Systems

This chapter analyses the requirements for event-driven systems, addressing (RQ1). The

chapter is organised as follows: Section 3.1 introduces event-driven systems, explains the

basics of message brokering and pub/sub systems, and focuses on a specific message broker

called Kafka. Section 3.2 describes the methodology for the requirement analysis that is

conducted in this chapter. Section 3.3 discusses three use cases of applications that use

consumer replicas and determines their non-functional requirements. Section 3.4 presents

two communication patterns that together represent the general patterns used in event-

driven systems. Finally, Section 3.5 summarises our analysis and discusses how Dyconits

can be used as a solution to the challenges presented in the use cases.

3.1 Introduction to Event-Driven Systems

In the ever-evolving landscape of software architecture, one paradigm has gained significant

traction for its flexibility, scalability, and responsiveness: the event-driven architecture

(EDA). At its core, an EDA is a design pattern in which software components execute

actions in response to events. These events are typically significant changes in state or

external triggers that the system must acknowledge and act upon (31). There are several

key characteristics and advantages of event-driven systems (32, 33):

• Enable Real-time Responses: Since systems react immediately to events, user

interactions become more fluid, and data processing is more timely.

23

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

• Promote Scalability: Components can be scaled independently based on event

loads, making it easier to manage resources and costs.

• Enhance Flexibility: New components or functionalities can be added with mini-

mal disruptions, as they can simply plug into the existing event stream.

• Improve Resilience: Since components operate independently, failures in one part

often don’t ripple through the entire system.

Although the universe of event-driven architectures is vast and varied, our focus in this

thesis will be quite specific: we are particularly interested in systems that employ multiple

consumer replicas for a single topic. These replicas not only consume the same event data,

but can also share the processed work among themselves. This configuration, although

incredibly powerful, poses its own challenges, especially when consistency is a priority. This

intriguing interplay of efficiency and consistency in such systems will be the cornerstone

of our next discussions. To this end, in the following sections, we will delve deeper into

the mechanics, tools and real-world applications of event-driven systems, always keeping

in mind our primary focus on multi-replica consumers.

3.1.1 Basics of Message Brokering and Pub-Sub Systems

In this subsection, we will introduce two central concepts that event-driven systems rely on.

These are message brokering and publish-subscribe (or Pub-Sub) models. Message Broker-

ing is about mediating communication between different components of a system – these

can be different components of one system or entirely different systems. The key element

here is the message broker, a special entity whose primary role is to receive messages from

producers, decide where they should go and make sure they get to the right consumers.

For example, in an online shopping system, a message broker could route messages from

the order service to the payment service, the inventory service, and the delivery service,

based on some criteria, such as topic, queue, or priority.

In the Pub-Sub model, the roles are clearly defined. Entities, called publishers, produce

messages. These messages are not sent directly to specific recipients. Instead, they are

published to a central hub. On the other hand, we have subscribers who express interest

in specific types of messages. The central hub, which assumes the role of message broker,

ensures that messages from publishers reach all interested subscribers. This way, event-

driven systems can achieve decoupling, scalability, and responsiveness.

24

3.1 Introduction to Event-Driven Systems

Figure 3.1: Kafka cluster architecture.

The Pub-Sub model is different from other communication models, such as point-to-point

or request-response. In point-to-point communication, each message has a single sender

and a single receiver. In request-response communication, each message has a sender who

expects a reply from a receiver. In both cases, the sender and the receiver need to know

each other’s identity and location. In contrast, in the Pub-Sub model, the sender and

the receiver are unaware of each other’s existence and location. They only communicate

through the message broker based on their interests.

There are many popular message brokers and pub-sub platforms that implement these

concepts, such as Kafka, RabbitMQ, or Azure Service Bus. These technologies provide

various features and options for building reliable and scalable event-driven systems

3.1.2 Introduction to Kafka

The landscape of event-driven systems and real-time data pipelines brims with diverse

platforms, each bringing its own set of advantages. While RabbitMQ excels in flexible

routing and Azure Service Bus integrates seamlessly with Microsoft services, we’ve chosen

25

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

to explore Kafka for its unique combination of attributes:

• Industry Trust: Over 80% of Fortune 100 companies lean on Kafka for their

mission-critical data operations (34).

• Scalability & Efficiency: Kafka’s design emphasizes high scalability, low latency,

and formidable throughput, adeptly handling vast data volumes and rapid event

rates.

• Fault Tolerance: Data replication across Kafka’s multiple brokers ensures strong

fault tolerance and high availability.

• Stream Processing: Kafka’s inherent real-time data processing capabilities set it

apart in the streaming platform ecosystem.

• Consumer Groups: Kafka’s approach to parallel event processing, via consumer

groups, offers unparalleled efficiency in data handling.

• Metrics & Monitoring: Kafka provides exhaustive metrics, such as throughput,

latency, errors, and availability, facilitating a nuanced understanding of event states

and application performance tuning.

With these compelling attributes, especially for event-driven systems relying on multiple

consumer replicas for a single topic, Kafka becomes an evident choice for detailed explo-

ration. Moving forward, we use Figure 3.1 to explore the core components of Kafka in

detail.

• Kafka Cluster and Brokers: A Kafka cluster is a collection of servers that run

Kafka, with each server being termed as a broker. These brokers are responsible for

storing and serving data related to various topics. Their distributed nature ensures

Kafka’s notable scalability and resilience.

• Topics and Partitions: Within Kafka, a topic is essentially a stream of events.

Topics are further subdivided into partitions, allowing the distribution of a topic

across multiple brokers. This division aids in parallelizing data reads and writes

across various brokers, enhancing throughput and performance. When a new event

enters a topic, it’s appended to a specific partition. Kafka ensures that events with

identical keys (like a customer ID or vehicle ID) go to the same partition. As a

result, consumers reading from a partition always see events in the order they were

26

3.2 Methodology for Requirement Analysis

written (35). To bolster fault tolerance, topics can have multiple replicas based on

a defined replication factor. In such a setup, one partition takes up the leader role,

while the others act as followers. The leader handles all data requests, and in case

of failures, one of the followers takes over the leader’s responsibilities.

• Producers and Consumers: A producer in the Kafka ecosystem is an entity or

application that sends or publishes events to topics. While producers can specify

the partition for an event, Kafka can also assign events automatically, either based

on a key or in a round-robin fashion. Conversely, a consumer subscribes to topics

to process their events. It can start reading from a particular offset or continuously

track the most recent events.

• Consumer Groups: A unique aspect of Kafka is its consumer group concept. A

consumer group comprises multiple consumers working in tandem to consume events

from a topic. Kafka ensures that each event in a topic is consumed by one and only

one consumer within a group. This design ensures both efficient data processing

and that no event is overlooked. This partitioning of work among consumers in a

group facilitates parallel processing, enhancing throughput. Furthermore, Kafka’s

decoupled nature means producers and consumers operate independently, a pivotal

aspect driving Kafka’s scalability.

3.2 Methodology for Requirement Analysis

In this section, we present our approach to analysing the requirements for event-driven

architectures. Our methodology, although non-traditional, derives its strength from prac-

tical insights. It blends informal discussions, expert consultations, and exploratory thought

experiments.

As part of our requirement analysis, we engage in informal discussions with industry ex-

perts at Info Support, often over lunch or a cup of coffee. Info Support is the specialist in

developing high-quality software solutions and a leader in artificial intelligence (AI), cloud

architecture, Managed Services and IT training across various sectors including health-

care, finance, agriculture, food, and retail. Their comprehensive knowledge provides vital

insights, especially about diverse EDAs.

During these casual interactions, we explore the fundamental characteristics of EDAs,

27

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

discussing both their advantages and challenges. We touch upon the various events under-

lying these architectures, the quality attributes they possess, and any necessary trade-offs.

In addition, we investigate best practices essential for EDA design. As part of our dis-

cussions, we delve into real-world applications and scenarios. Notably, we emphasize on

applications where multiple duplicate consumers listen to the same topic.

While our methodology might seem unconventional compared to more structured ap-

proaches, we design it with a clear purpose. EDAs are dynamic and multidimensional.

Often, the insights from practical experiences, such as the ones Info Support provides, sur-

pass what more structured academic methods can offer. Therefore, we ensure our analysis

remains grounded in real-world insights.

3.3 Real-World Use Cases of Event-Driven Systems

This section presents three use-cases of applications that employ event-driven systems,

illustrating their key features and challenges. The first use-case is a ‘smart IoT farming

application’, which demonstrates how event-driven systems can enable timely and effi-

cient management of critical resources such as water and crops. The second use-case is a

‘distributed chat room application’, which shows how event-driven systems can facilitate

asynchronous communication and state management among multiple participants. The

third use-case is a ‘real-time analytics application’, which highlights how event-driven sys-

tems can support business intelligence and decision-making by processing and analysing

large volumes of data. These three use-cases exemplify the versatility and potential of

event-driven systems, as well as the trade-offs and complexities involved in their design

and implementation.

3.3.1 Smart IoT Farming Application

Smart farming, exemplifying an IoT-driven application, utilizes sensors and trackers to

oversee and regulate diverse farming facets. Generating multiple events every second, the

system is resilient to occasional event losses or delays. For efficient communication and

device interaction, an EDA is employed. The sensors, acting as producers, gauge factors

such as soil moisture, temperature, humidity, and pH. They generate events based on their

measurements and user instructions. On the other hand, the consumers, comprising appli-

cations, exhibit the data, offer alerts or suggestions, or modulate irrigation and fertilization

systems, reacting to subscribed events.

28

3.3 Real-World Use Cases of Event-Driven Systems

What makes this use case particularly intriguing for our study is the challenge posed

by real-time data integration. A significant problem emerges when essential services en-

counter delays due to bottlenecks in processing. Let us focus on a scenario centred around

the crop_data topic within an IoT-integrated farm and examine potential solutions to

overcome these bottlenecks. The system consists of services tailored for specific functions,

each reliant on distinct data segments. For example, Service A, responsible for irrigation,

primarily uses moisture and temperature data to control watering. Service B orchestrates

the greenhouse climate by analysing various atmospheric parameters. However, services

like Service C, an Analytics and Reporting tool, face a unique challenge. Due to com-

plex data processing tasks or its batch processing nature, it might lag in real-time data

assimilation. Typically, this service would independently analyse the data. Yet, its latency

can lead to substantial operational postponements, thus becoming a bottleneck. However,

Dyconits present a promising solution to this challenge. Services A, B, and C can operate

under a shared Dyconit. If Service C lags, either in staleness or numerical order, Services A

and B can forward their processed data to it. This enables Service C to promptly integrate

these insights into its reports. Despite its processing constraints, this approach ensures

Service C remains up-to-date without the immediate need to process raw data.

Given the intricacies of such a smart IoT farming application, one must consider sev-

eral non-functional requirements. We consider aspects such as performance, reliability,

availability, and consistency as key non-functional requirements for this application. This

is because the efficiency and effectiveness of smart farming hinge on timely, uninterrupted,

and accurate data processing and action. Delayed or inaccurate data can lead to subop-

timal farming decisions, potentially affecting crop yields, and jeopardizing the financial

viability of the farming operation. A complete list of non-functional requirements for this

application is:

• Performance: The system should deliver events in near real time with low latency

and high throughput.

• Reliability: The system should handle event loss or delay gracefully and recover

from failures quickly.

• Availability: The system should be operational at all times and provide backup or

alternative solutions in case of disruptions.

29

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

• Consistency: The system must ensure the right level of consistency for different

types of events. While some events might tolerate inconsistency due to their non-

critical nature, others that influence farming decisions directly must be managed

with strict consistency measures.

3.3.2 Distributed Chat Room Application

We present a messaging application as the second case study to exemplify distributed ap-

plications in EDAs. This distributed messaging service draws inspiration from advanced

platforms like Discord1, Twitch Chat2, and Microsoft Teams3.

Our application allows users to create and join chat rooms, send and receive messages,

and leave chat spaces. These actions generate events that need to be handled efficiently.

To do so, the application uses services of the same type, but with different consumers

reading from a common topic. For example, one service filters spam messages, another

encrypts and decrypts messages for privacy, and another transcribes voice and media com-

munications. This way, if a consumer in any service delays or fails, another consumer

can take over, accessing and processing the shared data, ensuring no service disruption or

degradation. This is useful when the application faces high demand and needs to provide

a smooth user experience. Imagine a scenario like new-years-eve, where there is a surge of

events. The services can ensure that if a consumer is lagging too much, it can catch up

with the processed information to maintain consistency.

Different events or data within the application warrant varying levels of consistency. For

less crucial events like notifications, analytics, media archiving, and message transcription,

eventual consistency suffices. These elements can undergo periodic updates and propaga-

tion without disrupting the app’s primary functions. Conversely, essential events such as

user authentication, profile adjustments, chat room initialization and participation, and

message sequencing and dispatch require strong consistency. Furthermore, software engi-

neers can utilize Dyconits to set distinct consistency standards for diverse events, such as

messages or notifications from friends versus those from strangers.

1https://www.discord.com/
2https://www.twitch.com/
3https://www.microsoft.com/microsoft-teams

30

https://www.discord.com/
https://www.twitch.com/
https://www.microsoft.com/microsoft-teams

3.3 Real-World Use Cases of Event-Driven Systems

A chat application has several non-functional requirements (NFRs) that it needs to ful-

fil. These NFRs include scalability, latency, and consistency, which affect the design and

operation of the application:

• Scalability: The chat application should be capable of accommodating a substantial

number of concurrent users and messages.

• Latency: The chat application should provide near-real-time communication and

interaction between users.

• Consistency: The chat application should ensure consistent event propagation and

ordering across all participants, offering a synchronised view of events. It is essential

to guarantee strong consistency for critical user experience and functionality events,

such as authentication, profile settings, chat room creation and joining, as well as

message ordering and delivery. However, for less critical events like notifications,

analytics, media storage, and message transcription, the application should ensure

eventual consistency.

3.3.3 Real-time Analytics

The final use case showcases a ’stream processing’ analytics system, designed to analyse

data in real-time across multiple nodes. This often requires stream enrichment through

methods like database lookups, ETL transformations, or appending machine learning

scores (36). In this application, payment gateways generate events based on user actions,

such as credit card purchases. Alert services respond to these events, notifying stakehold-

ers of pertinent issues like fraudulent transactions.

To ensure data integrity, pivotal events—like those tied to fraud detection—leverage strong

consistency guarantees. However, less critical ones, such as report generation, can rely on

eventual consistency. This application uses replicated consumers that read from the same

topic. This means that all service instances receive the same events from the topic and

process them in the same way. If one consumer falls behind or fails, it can swiftly syn-

chronize by receiving processed data from another active consumer rather than fetching it

again from the broker. Thus, if a consumer responsible for appending machine learning

scores to events falls behind, it can swiftly synchronize by receiving processed data from

another active consumer rather than fetching it again from the broker. This capability

31

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

ensures that all parts of the system maintain consistency and resilience, even when indi-

vidual components encounter hiccups.

To meet the requirements of a real-time analytics application, we adhere to the recom-

mendations provided by Stonebraker et al. (37). Their work continues to play a major role

in the development of new systems for real-time analytics (38), despite being almost two

decades old. These requirements encompass scalability, latency, and consistency.

3.4 Communication Patterns in Event-Driven Systems

Event-driven systems primarily rely on specific communication patterns to effectively relay

information across distributed services. In this section, we focus on the star and multi-

hop topologies. We choose these two topologies for two main reasons. First, they offer

distinct benefits for EDAs. The star topology, which has a central hub that connects all

the other nodes, enables efficient broadcasting and centralized management, which are

essential for dynamic and complex system environments. On the other hand, the multi-

hop topology, which involves data passing through multiple intermediate nodes before

reaching its destination, provides higher resilience and redundancy, which reduce the risk

of system failures. Second, we argue that a system that can operate effectively within these

two contrasting topologies can also adapt to other, less conventional topological designs.

Therefore, our aim is not only to compare the strengths and limitations of the star and

multi-hop configurations, but also to propose a versatile system that can handle a wider

range of topologies in real-world scenarios.

3.4.1 Star Topology in Event-Driven Systems

The star topology, as shown in Figure 3.2, is a communication pattern that enables pub-

lishers to disseminate messages without specifying subscribers. Rather than addressing

messages to specific receivers, publishers classify them into categories, denoted as topics

in this thesis, and broadcast them to all interested subscribers. Conversely, subscribers

indicate their interest in one or more topics and receive only the relevant messages, without

being aware of the publishers’ identities. The star topology often employs an intermediary

entity, called a message broker or event bus, to which publishers post messages and from

which subscribers retrieve messages. The broker is responsible for filtering and routing

messages from publishers to subscribers according to their subscriptions. Moreover, the

broker may queue and prioritize messages before delivering them.

32

3.4 Communication Patterns in Event-Driven Systems

Event Bus

Publisher

Publisher

Subscriber

Subscriber

Subscriber

msg

msg

msg

msg

msg

msg

msg

msg
msgmsg

topic

Figure 3.2: The star communication pattern enables message exchange between different
services of an application or system. Publishers send messages to a message broker or event
bus, which filters and routes them to subscribers according to their subscriptions. Subscribers
receive only the messages that match their interests, without knowing the publishers’ identities.

To illustrate this communication pattern, consider the chat application from the use cases

introduced in the previous section. In our distributed chat application, users generate var-

ious events when they send messages, join rooms, or perform other actions. This dynamic

can be visualized within the context of a star topology, where the chat application acts as

the publisher and the various services, such as the spam filter, encryption, and decryption

services, act as subscribers. These subscribers express interest in specific topics or events,

ensuring they only receive the relevant messages without needing to know which user or

part of the application generated the event. This makes the application highly scalable and

ensures that if a consumer in any service delays or fails, another can take over, accessing

and processing the shared data, thus ensuring no service disruption.

The star topology offers several benefits (39, 40):

• It enables decoupling of subsystems, which allows for independent management of

each subsystem and ensures reliable message delivery even in the presence of offline

or unavailable receivers. This enhances the scalability and improves the performance

of the sender.

• It increases the reliability, as asynchronous messaging allows applications to cope

with increased loads and handle intermittent failures more effectively.

33

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

However, the star topology also comes with some drawbacks stemming from its main

strength: The decoupling of publisher and subscriber. As the number of subscribers and

publishers grows, the increasing volume of messages exchanged may compromise the sta-

bility of this communication pattern; it may collapse under high loads.

Some examples of large-scale throughput instability include:

• Load peaks: intervals in which subscriber requests exceed network throughput, fol-

lowed by intervals of low message volume (underutilised network bandwidth).

• Delays: as more and more applications use the system (even if they communicate on

different pub/sub-channels), the message flow to a single subscriber will decrease.

As with all systems, the star topology is not without its challenges. Centralizing commu-

nication can create bottlenecks, especially under heavy loads. To address these drawbacks,

we propose to use Dyconits as intermediaries between the publisher and the subscriber.

Dyconits enable optimistic inconsistency within certain bounds, which means that they

can accept some degree of divergence among the services as long as it does not exceed a

predefined threshold. Under heavy load, dyconits can tolerate more inconsistencies within

a bound, which allows them to cope with the increasing volume of messages and enhances

the performance of the system. When the bound is reached, they can either enforce syn-

chronisation among the services and request the publisher to reduce the event production

rate, or increase the bounds further to allow for more inconsistency as a trade-off for better

performance. Alternatively, under low load of events, dyconits can dynamically adjust the

bound using their policies to ensure a higher level of consistency.

3.4.2 Multi-hop Topology in Event-Driven Systems

In this section, we show how Dyconits can be applied to a more complex communication

pattern than the star pattern: the multi-hop pattern. Multi-hop communication is a mes-

saging pattern that involves a chain of events triggered by a single message. For example,

a publisher ‘A’ sends an event to a message broker, which is retrieved by a subscriber ‘B’.

Based on the information received from ‘A’, ‘B’ produces its own event and publishes it to

the same or a different message broker. A subscriber ‘C’ listens for this event and receives

it from the message broker. Multi-hop communication also inherits the drawbacks of the

star communication pattern, such as the lack of feedback and the possibility of overload.

Therefore, it is essential in this communication pattern that each point where events are

34

3.5 Discussion and Implications of Dyconits in Event-Driven Architectures

Subscriber

Event Bus

Publisher

Publisher

Subscriber

Subscriber
msg

msg

msg

msg

msg

msg

msg

msg
msgmsg

topic

Pu
bl

is
he

r

msg

msg

msg

msg

Figure 3.3: Multi-hop communication pattern.

retrieved or published considers all other events generated based on the previous event.

To illustrate this communication pattern, consider the real-time analytics use case de-

scribed earlier. This application uses a stream processing analytics system where payment

gateways generate events based on user actions, such as credit card payments. These events

traverse through various nodes, like database lookups, before being enriched with machine

learning scores. Once enriched, another service may take this event and generate an alert

which is then propagated further, maybe to a stakeholder notifying system. The ability of

this system to use replicated consumers that can synchronize data among each other rein-

forces the multi-hop messaging pattern, with data hopping from one node to another until

its final destination. By using Dyconits in this communication pattern, each microservice

can focus on its own task without worrying about the events that triggered it or the events

that it will trigger because the dyconit consistency model will ensure that when services

are out of sync, they will eventually converge to a consistent state. This way, the data

quality and reliability of the multi-hop communication system can be maintained.

3.5 Discussion and Implications of Dyconits in Event-Driven
Architectures

Event-driven architectures power various real-world applications. Each use-case presented—a

smart IoT farming application, a distributed chat room, and real-time analytics—reflects

the multifaceted challenges and requirements of implementing EDAs.

35

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

However, across the use-cases, we observed challenges such as:

• The Need for Consistency: Different events may necessitate varying degrees of

consistency. Both priority and non-priority events should be managed to provide an

optimal experience without compromising data integrity.

• High Availability and Reliability: Systems must be operational at all times,

given their real-time nature. Downtimes can have significant repercussions.

• Managing Bottlenecks: In event-driven architectures, bottlenecks can manifest in

various forms, hindering system performance and compromising the real-time guar-

antees of the system.

Therefore, we propose that by creating a general Dyconit system for event-driven systems,

we can mitigate these challenges by allowing for optimistic inconsistency, which can en-

hance system performance during peak usage periods while maintaining acceptable bounds

on stable periods. This adaptability can enhance the performance and resilience of event-

driven systems, especially in scenarios with varying workloads.

In addition, in scenarios with multiple replicated consumers, Dyconits’ capabilities are

further pronounced. Replicated consumers reading from the same topic ensure resilience.

If one consumer lags (i.e., it exceeds either the staleness or numerical error bound), another

can promptly synchronise by receiving processed data from an active consumer. Dyconits,

adept at managing event flows and processing loads, determine the optimal strategy for

when data forwarding based on its bounds. This results in optimistic inconsistent system

behaviour and optimised resource usage.

As a result, we advocate for a general Dyconit system design tailored for EDAs. This

system would offer:

• Flexible Consistency Management: Ensure optimal performance and data in-

tegrity by dynamically adjusting consistency based on event nature.

• Enhanced Resilience: Marry the strengths of replicated consumers and Dyconits

to ensure high system availability and reliability.

• Real-time Monitoring and Management: Adapt to event flows, resource allo-

cation, and potential bottlenecks by using Dyconits’ inherent adaptability.

36

3.5 Discussion and Implications of Dyconits in Event-Driven Architectures

We use this enumeration to create a complete list of functional and non-functional require-

ments for the generic dyconit system for event-driven systems in Chapter 4.

To sum up, while EDAs present unparalleled advantages, they come with inherent chal-

lenges. However, with a Dyconit system’s integration, these challenges can be navigated

effectively, ushering in an era of more robust, efficient, and resilient event-driven solutions.

37

3. REQUIREMENTS ANALYSIS FOR DYCONIT SYSTEMS IN
EVENT-DRIVEN SYSTEMS

38

4

Design of a Generic Dyconit System
for Event-Driven Systems

This chapter presents the design of a generic Dyconit system for Event-Driven Architec-

tures, addressing (RQ2). The chapter is organized as follows: Section 4.1 defines the core

functional requirements for the Dyconit system to integrate seamlessly with EDAs. Sec-

tion 4.2 gives a high-level overview of the Dyconit system design for EDAs. Section 4.3

zooms in on the Dyconit Overlord and the Dyconit Admin components, providing a de-

tailed view of their internal structure and interaction. Section 4.4 explains how the Dyconit

system satisfies our functional requirements by bounding consistency using dyconits. Sec-

tion 4.5 describes the design of dynamic policies in the Dyconit Overlord component. These

policies enable the system to adjust its behaviour based on the current workload and per-

formance metrics, ensuring optimal performance and consistency. Section 4.6 describes

how the Dyconit system deals with faults. In Section 4.7, the prototype generic Dyconit

consistency model is classified within the application-oriented perspective, specifically un-

der the dynamic/optimistic subcategory. Finally, Section 4.8 discusses the design process

and alternatives.

4.1 Generic Dyconit Model Requirements

This section defines the core Functional Requirements (FRs) and Non-Functional Require-

ments (NFRs) for the Dyconit system based on the findings of Chapter 3. This activity

falls in stage (1) of the AtLarge Design Process (41).

Our objective is to develop a highly adaptable system capable of accommodating diverse

39

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

communication patterns within an EDA. This entails efficiently handling the addition and

removal of nodes, ensuring seamless integration of varied data sources, and facilitating

dynamic adjustments to workflow configurations. Additionally, the system should offer

users a range of consistency options tailored to their specific needs, allowing them to strike

a balance between data accuracy and system performance based on their operational re-

quirements. To achieve this overarching goal, we leverage the existing requirements of the

Conit model and the Dyconit model, making necessary modifications to ensure generality.

Specifically, we extend requirements that are bound to Dyconits working for MVEs and

introduce new requirements that cater to the distinctive communication patterns prevalent

in EDAs.

Previously, the Dyconit system was predominantly designed for client/server systems,

where clients make requests to servers and receive responses. Dyconits are employed in this

context to maintain consistency between distributed environments housing multiple copies

of the data. However, EDAs feature a distinct architecture wherein components commu-

nicate through events and commands that trigger actions in other components. These

systems exhibit a diverse range of architectures and communication patterns, resulting in

varying consistency requirements depending on the specific use case at hand. For instance,

some EDAs prioritize the order of events, while others suffice with eventual consistency.

Therefore, the same set of requirements cannot be applied to EDAs without modification

to account for the differences in architecture and consistency requirements.

Building upon our understanding of the unique challenges posed by EDAs and the need

for modified requirements, we now transition to defining the FRs enabling the expansion

of the Dyconit system to work effectively within the domain of EDAs.

4.1.1 Functional Requirements

FR1 Event-driven architecture support: The system should accommodate different

communication patterns, beyond the client/server architecture of the original Dyconit

system.

In Chapter 3, we have identified that EDAs can be built using different communica-

tion patterns. The dyconit system should be able to accommodate each pattern to

support various types of applications in various domains.

40

4.1 Generic Dyconit Model Requirements

FR2 Range of consistency bounds: The system should support a range of consistency

bounds to allow users to choose the level of consistency that best suits their needs.

Different applications and use cases may have different consistency requirements,

depending on how critical it is to have the most up-to-date and accurate data. Con-

sistency bounds are a way of measuring how well a system can handle different levels

of consistency between different data sources or replicas. Consistency bounds are

defined by two parameters: staleness and numerical error. Staleness measures how

frequently the data sources are updated and how much delay there is between them.

Numerical error measures how much the data values differ between the data sources.

FR3 Configurable initial bounds: Software engineers should be able to set their own

initial consistency bounds. This feature would allow users to set consistency bounds

based on their specific application requirements.

The system can accommodate different needs and allow users to choose the initial

level of consistency that best suits their requirements by providing a range of con-

sistency bounds. For instance, an e-commerce website might need fast updates and

accurate values for transactions, so it would initialise the consistency bounds with

low staleness and low numerical error values. On the other hand, a chat application

might tolerate some delay and variation in chats, so it would initialise the consis-

tency bounds with high staleness and high numerical error values. Hence, the system

should be flexible enough to support both types of use cases.

FR4 Dynamic policies based on application-centric consistency requirements:

The system should adjust its policies based on the current event throughput to ensure

optimal performance.

This requirement is important for the system to be able to handle changing workloads

and ensure optimal performance. By dynamically adjusting its policies, the system

can respond to changes in activity and maintain the desired level of consistency. For

instance, if there is a sudden increase in activity, the system can prioritize availability

for all users, even if that means allowing for some level of inconsistency.

FR5 Real-time interactive system support The system should handle nodes joining

or leaving the topology while it is running.

In EDAs, nodes should be able to join or leave the topology at any time, and the

system should be able to handle these changes. For example, when a new node joins

the topology, it should notify the others and receive the current state.

41

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

FR6 Run-time monitoring The system should provide insight into how the dyconits

are behaving at run-time, including metrics for consistency, performance, and other

relevant indicators.

The ability to monitor the system during operation is important to ensure optimal

performance and detect potential problems. By providing insight into the behaviour

of the dyconits, the system can be adjusted to improve its efficiency and effectiveness.

For example, by observing trends in consistency metrics, operators can determine

if certain dyconits are becoming bottlenecks or if data inconsistency issues arise.

Meanwhile, monitoring performance indicators can help identify areas where the

system can be improved to increase throughput or reduce response times, ensuring

that users experience the highest quality of service.

4.1.2 Non-Functional Requirements

NFR1 Maintain low latency in sending messages related to Dyconits

The purpose of this NFR is to reduce the delay in sending messages that contain

information about the dyconits’ state and boundaries. These messages are essential

for achieving good performance gains from inconsistency. As such, the system must

be designed to ensure that the maximum latency for the transmission of dyconit-

related messages does not exceed a predefined threshold of 1000 milliseconds.

NFR2 Ensure low overhead for Dyconit-related communication

The goal of this NFR is to reduce the overhead in resource utilization and bandwidth

consumption for dyconit-related communication, which can affect the system’s per-

formance and scalability. It is important to keep the number of messages related

to dyconits low. Therefore, the system should be designed to limit the number of

dyconit-related messages to no more than one per node every five seconds.

NFR3 Ensure stable performance through high throughput and low Latency

The goal of this NFR is to maintain stable system performance by ensuring high

throughput and low latency. The system must be designed to dynamically adapt

to changing workloads while consistently maintaining a minimum throughput of 1.5

requests per second.

42

4.1 Generic Dyconit Model Requirements

4.1.3 Requirements Development

We follow an iterative process for requirement analysis (41), which means that our

requirements change as we learn more about the problem. We give some examples

of how we modified key requirements over time and why we did so.

At first, we set Non-Functional Requirements for the applications that will use the

dyconit system. These are different types of requirements, as shown in the use cases in

Section ??. However, this was not a good way to define requirements for the dyconit

system itself because they did not capture its main functionality and performance.

Therefore, we decided to focus the functional and non-functional requirements for

the dyconit system on its own features.

We changed Requirement FR2 (Range of consistency bounds) to have only two con-

sistency dimensions instead of three, as in the original conit implementation. We

realized during the design phase that Apache Kafka already ensured order. To avoid

having a useless consistency dimension, we removed it from our design.

We added Requirement FR6 (Run-time monitoring) after creating the first design

of the generic Dyconit system. We realized that the Dyconit Overlord (Section 4.3)

already needed to monitor the behaviour of the generic dyconits system. There-

fore, we could easily extend this to allow users some feedback on how the system is

performing. This is also useful for evaluating the system.

43

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

4.2 High-Level Overview of the Generic Dyconit System

Event bus

Performance
monitor Dyconit

Policies

5

Event-Driven System

Update
bounds

Quantify
inconsistency

Dyconit collection

staleness: 1000
numerical: 10

Dyconit collection

staleness: 500
numerical: 10

1

Dyconit Overlord

Dyconit Admin
Consumer

Performance
monitor

Legend: data flow control flow

2
3

4

6 7

Figure 4.1: The high-level overview of the Dyconit system, which consists of two main com-
ponents: the Dyconit Overlord and the Dyconit Admin. The Dyconit system optimistically
bounds inconsistency in EDAs by allowing for different consistency requirements for different
nodes. The Dyconit Overlord monitors the system performance, maintains the global collec-
tions of dyconits, and dynamically adjusts the policies for each dyconit. The Dyconit Admin
acts as a middleware between the event bus and the nodes, and quantifies and bounds the
inconsistency in staleness and numerical dimensions. The figure also shows how the compo-
nents communicate with each other and with the event bus and the nodes.

This section presents the design of a generic Dyconit system for optimistically bounded

inconsistency in EDAs. Focusing on EDAs, which facilitate the development of loosely

coupled and scalable systems through event-based communication and processing (FR1),

the Dyconit system limits resource consumption, even when disseminating events to a large

number of subscribers, by bounding inconsistency between each event and its correspond-

ing subscribers at a fine-grained level.

Figure 4.1 depicts our design. The design comprises two primary components: the Dy-

conit Overlord and the Dyconit Admin. The Dyconit Overlord assumes the responsibility

44

4.2 High-Level Overview of the Generic Dyconit System

of maintaining an overview of system performance (FR6), conducting accounting for node

participation in different conits, and dynamically adjusting policies (FR4). The Dyconit

Admin system acts as a middleware, specifically designed as a component between the

existing event bus of the EDAs and the producer/consumer nodes. It requires no modifi-

cation in the core functionality of these nodes, making it a seamless integration within the

architecture.

Having presented the high-level overview of the Dyconit system, we proceed to exam-

ine its components in greater depth. Consumers pull events from the event bus according

to their subscriptions to specific events (1 in Figure 4.1). The Dyconit admin processes

the events (2) and periodically sends performance metrics like event and synchronisation

throughput (3). The Dyconit Overlord collects and processes the performance metrics

from all Dyconit Admins (4). The policies describing the behaviour of the dyconits are

adjusted dynamically by the Dyconit Overlord using performance metrics (5). The sys-

tem updates inconsistency bounds dynamically, based on the policies stored at the Dyconit

Overlord (6). To bound inconsistency, the Dyconit Admin quantifies the inconsistency

caused by each incoming event (7), forwards it to the corresponding dyconit, and evalu-

ates the consistency requirements for each node (FR3). If a node’s bounds are exceeded,

the Dyconit admin forwards all event updates to the other nodes in the Dyconit collection.

The Dyconit collection consists of an arbitrary group of consumer nodes that all share the

same work.

45

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

4.3 Components of the Dyconit System

Manager

Heartbeat
Monitor

Dyconit
Policies

Dyconit Overlord

Legend: data flow control flow

Data Processor

Staleness Actor

Numerical Actor

Workload monitor

Manager

Data Processor

Staleness Actor

Numerical Actor

Workload monitor

Local Collections

Dyconit AdminDyconit Admin

Global
Collections

Performance
Processor

Workload MonitorWorkload Monitor

Local Collections

Figure 4.2: The internal structure and interaction of the two main components of the Dyconit
system: the Dyconit Overlord and the Dyconit Admin. The Dyconit Overlord is responsible for
monitoring the heartbeat of the nodes, storing the global collections of dyconits, processing the
performance metrics, and applying the dyconit policies. The Dyconit Admin is responsible
for managing the local collections of dyconits, bounding the inconsistency in staleness and
numerical dimensions, and processing the data from other nodes. The figure also shows how
the components communicate with each other and with other nodes in the EDA.

In this section, we zoom in on the two main components of the Dyconit system: the Dyconit

Overlord and the Dyconit Admin. Figure 4.2 shows the internal structure and interaction

of these components.

4.3.1 Dyconit Overlord

The Dyconit Overlord comprises four subcomponents: the Heartbeat Monitor, the Global

Collections, the Performance Processor, and the Dyconit Policies.

46

4.3 Components of the Dyconit System

The Heartbeat Monitor is responsible for sending periodic heartbeat messages to every

node in the EDA. It obtains the information about the Dyconit Admins from the Global

Collections. If the Heartbeat Monitor does not receive a response from a node, it removes

the reference to this node from every collection that contains dyconits of this node. If this

node becomes available again, the information is restored in the Global Collections and

heartbeat messaging to this node resumes.

The Global Collections in the Overlord store information from each dyconit collec-

tion. A dyconit collection is a group of nodes that share the same dyconit. Hence, when a

node joins the EDA, it also communicates with the Overlord which dyconit collections it

is part of.

The Performance Processor gathers metrics on the state of the EDA. It also receives

metrics from the nodes. Based on the available metrics, the Performance Processor decides

whether to dynamically adjust the policies.

The dyconit policies apply to one or more dyconit collection in the Global collection.

The policies are stored at the Overlord. Depending on the system throughput and the

dynamic bound policy that is used, the consistency bounds of the dyconits are adjusted,

and this update is communicated to all relevant nodes.

4.3.2 Dyconit Admin

The Dyconit Admin consists of six subcomponents: the Manager, the Workload Monitor,

the Local Collections, the Staleness Component, the Numerical Component, and the Data

Processor.

The dyconit manager has a dual responsibility. First, it is responsible for sending a

heartbeat reply back to the Dyconit Overlord. Second, it checks for inconsistency in two

inconsistency dimensions, based on the configured dyconits. If synchronisation is required

for one of the consistency dimensions, the event is forwarded to the corresponding com-

ponent. The Manager synchronises with other nodes by exchanging updates with the

corresponding components on remote nodes. The figure shows only one remote node, but

there can be arbitrarily many remote nodes to synchronise with.

47

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

The Workload Monitor is responsible for keeping track of the local performance of

the node and analysing the performance and utilization of computing resources within. It

sends this information to the Dyconit Overlord, which in turn can dynamically adjust the

bounds based on the set policy.

The Local Collections store only the collections that are active on that node. They

also have information about which other Dyconit Admins are in the same collection. This

way, the Dyconit Admin can contact a remote node without going through the Overlord.

If a node in the Local Collection is down, or a new node joins the collection, the Manager

will update the Local Collection accordingly. If the bounds change, this change will reach

the Local Collections.

The Staleness and Numerical Components are responsible for bounding optimisti-

cally bounding inconsistency. In case a bound is exceeded, it communicates the need to

synchronise with all other nodes in their respective local collection through the dyconit

manager.

The Data Processor is responsible for processing received events from other dyconit

nodes.

4.4 Design of Consistency Bounding

The Dyconit system design meets FR2 and FR3 by using dyconits to limit inconsistency.

Our design follows the work of Donkervliet et al. (10), which only considers two dimensions

of inconsistency: staleness and numerical error. We do not use the third dimension of order

error, which was used by Yu et al. (11) in their Conits, because event streaming platforms

like Apache Kafka, which we use in our implementation, already ensure order (35).

In the Dyconit design for EDAs, software engineers can set the limits for staleness and

numerical error for each event. This allows the application-centric perspective, where we

have fine-grained control over the consistency of our application. A range of consistency

options is offered by giving the limits a value between [0,∞). For a value of 0, the Dyconit

system guarantees sequential consistency and for a value greater than zero, we use a form

of eventual consistency. In the Dyconit design, each event produced has a specification

which dyconit is affected, and a weight associated with it to enable numerical error limiting.

48

4.4 Design of Consistency Bounding

To bound staleness, each node keeps track of the last time writes were pulled from each

of its neighbours in the local collection. Let ti be the timestamp of the i-th event, and

let T j
i be the last time node j pulled writes from node i. Let S be the staleness bound,

such that any event must have a view of the data that is at most S time units behind the

most recent write. Then the staleness error of node r before processing the event can be

calculated as:

Er = maxni=1(ti − T r
i) (4.1)

This formula gives the maximum difference between the timestamp of any event and the

last time node r pulled events from that node. If Er ≤ S, then node r can continue without

violating the staleness bound. Otherwise, node r must pull writes from all nodes in the

local collection before continuing processing.

The numerical error of a node is defined by first assigning a global weight to each write,

and then calculating the sum of the weights of locally unseen writes. Let wi be the global

weight of the i-th write, and let U j
i be the set of locally unseen events by node j after

performing the i-th event. Then the numerical error of node j after the i-th event can be

calculated as:

Ej
i =

∑
k∈Uj

i

wk (4.2)

This formula gives the numerical error after a given event. If Ej
i ≤ N , then node j can

continue without violating the staleness bound. Otherwise, node j must pull writes from

all nodes in the local collection before continuing processing.

To bound inconsistency, we use the same reactive approach as Donkervliet uses in the

original Dyconits (42). This means that we check for staleness and numerical order one

after another. This reactive approach has the drawback of causing more synchronisation

latency, but in return, we make the system more predictable and therefore easier to study.

For each event, we trigger the staleness limiting mechanism first and then trigger the nu-

merical error limiting mechanism. We synchronise with other nodes that are part of our

local collection as soon as a consistency limit is exceeded. The implementation details are

described in Section 5.1.3.

49

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

4.5 Dynamic Policies

The Dyconit Overlord design meets the requirements of FR4 and FR6 by employing a per-

formance processor that adjusts the dyconits residing in the Global Collections according to

the chosen policy. The performance processor periodically queries the Global Collections’

nodes for their event production/consumption and internode synchronisation throughput.

The local workload monitors report this information to the performance processor. The

dyconit affects the consistency and communication overhead among the nodes. Decreasing

the bounds improves the consistency, but also increases the number of messages required

for synchronisation. Conversely, increasing the bounds reduces the number of messages,

but also lowers the consistency. The performance processor can change the bounds based

on the number of events produced, using the dynamic bound policy. The dynamic pol-

icy determines how the dyconits are adapted to achieve a balance between consistency

and communication overhead. While software-engineers can create their own policies, we

present three examples of policies and discuss them in the sections below.

4.5.1 Simple Policy

This policy adjusts its consistency bounds based on both event consumption throughput

and synchronisation throughput. The consistency bounds are increased or decreased by

a fixed percentage, depending on whether the throughput exceeds or falls below a certain

threshold. By increasing the consistency bounds when the throughput is high, the policy

allows for more flexibility and scalability. By decreasing the consistency bounds when the

throughput is low, the policy ensures more accuracy and reliability.

4.5.2 Moving Average Policy

This policy adapts its consistency bounds based on the event consumption throughput’s

moving average over a window of 3. It compares the average with a threshold and adjusts

the bounds accordingly. If the average is above the threshold, the bounds are increased to

reduce the overhead of synchronisation. If the average is below the threshold, the bounds

are decreased to at most their original values. This policy is more suitable for scenarios

with bursty event consumption than the simple policy, as it can dynamically respond to

changes in throughput. However, it does not change the bounds if the throughput is

consistently low.

50

4.5 Dynamic Policies

4.5.3 Exponential Smoothing

This policy uses exponential smoothing on event consumption throughput to adjust its

consistency bounds. It computes a weighted average of the current and previous values,

using a smoothing factor (α). The higher the smoothed value, the larger the bounds, which

reduces the overhead of synchronisation. The lower the smoothed value, the smaller the

bounds, which improves the accuracy of consistency. This policy is able to swiftly adapt

to fluctuations in throughput and lessen the impact of outliers, due to its sensitivity to

recent input changes and weighted averaging.

51

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

4.6 Real-time Interactive System Support

The design of the Dyconits system complies with FR5 through the inclusion of two func-

tionalities. These functionalities encompass the dynamic topology adaptation mechanism

and the heartbeat monitor. The dynamic topology adaptation mechanism enables the sys-

tem to automatically modify its network topology in response to environmental changes.

This mechanism guarantees that new nodes can join the topology and existing nodes can

exit without causing communication deadlock. For instance, it prevents situations where

a node is waiting for a response from a node that is no longer present in the topology. The

heartbeat monitor assumes the responsibility of continuously monitoring the health and

availability of system components. It accomplishes this by regularly emitting heartbeat

signals and verifying timely responses from other components. This functionality aids in

the detection and resolution of issues or failures within the system.

4.6.1 Dynamic Topology Adaption Mechanism

New node event

New Node Dyconit Overlord

Add note to
Global Collections

Remote Node 1 Remote Node N

New node event

New node event

Add note to
Global Collections

Add note to
Global Collections

Ack

Ack

Send all node in collection

Figure 4.3: Sequence diagram of the dynamic topology adaptation mechanism for Dyconits.
The diagram shows how a new node joins the topology and communicates with the Dyconit
Overlord and the existing remote nodes.

As shown in Figure 4.3, the dynamic topology adaption mechanism consists of a sequence

of steps that enable a new node to join or leave the topology and communicate with

the Dyconit Overlord and the existing remote nodes. However, this scenario assumes

ideal communication conditions without failures or delays. In reality, we employ various

52

4.7 Consistency Model Classification

techniques such as retry mechanisms, timeouts, and duplicate detection to cope with these

challenges, as we discuss in detail in Chapter 5.

4.6.2 Heartbeat Monitor

Dyconit Overlord Remote Node 1 Remote Node 2 Remote Node N

heartbeat message

heartbeat message

heartbeat message

ack

ack

Repeat 3x

Figure 4.4: Sequence diagram of the heartbeat mechanism to monitor the status of nodes in
the global collections.

The designed heartbeat mechanism periodically sends a request to each node in the global

collections residing in the Dyconit Overlord to check if they are still alive. Figure 4.4

illustrates a simple sequence diagram of this mechanism. If a node fails to respond to three

consecutive requests, the Dyconit Overlord assumes that it is down and notifies all other

nodes via the sequence shown in Figure 4.3.

4.7 Consistency Model Classification

The first aspect to determine is the placement of the prototype generic Dyconit consistency

model within the various perspectives outlined in Chapter 2. Dyconits itself belongs to

the application-oriented perspective, as it enables tailoring consistency levels to specific

subsets of operations, rather than adopting a one-size-fits-all approach. Moreover, the

original Dyconits falls under the dynamic/optimistic subcategory within this perspective.

This subcategory allows for temporal inconsistency, thereby reducing synchronisation over-

head and improving performance. Additionally, it facilitates the adjustment of set bounds

during execution based on a predefined policy.

Comparing the classification of the original Dyconits with the desired characteristics of

the generic Dyconit model, we observe that we fulfil the requirements necessary for the

53

4. DESIGN OF A GENERIC DYCONIT SYSTEM FOR
EVENT-DRIVEN SYSTEMS

dynamic/optimistic subcategory within the application-centric perspective. For instance,

the generic Dyconit model can control consistency at the application level (Section 4.3),

specifies boundaries that permit a certain degree of inconsistency (Section 4.4), and incor-

porates a mechanism for dynamically adjusting these boundaries according to predefined

policies (Section 4.5).

4.8 Design Process and Alternatives

We reached this design through an iterative design process following the principles of the

AtLarge design vision (41) Our process involved repeated ideation and analysis of numer-

ous designs, assessing their level of innovation as new solutions to the problem and their

pragmatism in terms of feasibility for implementation in the specific conditions of use.

In this research, we have designed a system that uses Dyconits to enable optimistic in-

consistency in general event-driven systems. Our design focuses on how consumers com-

municate with each other to cope with the challenges of latency and availability. However,

this design choice restricts our system to scenarios where consumers are homogeneous and

can share workloads among themselves. A more general system that also considers the

roles of the event broker and the producer would introduce more complexity and chal-

lenges, which are beyond the scope of this research. Therefore, we suggest some directions

for future work to extend our system. One possible idea is to leverage the information

available at the broker level. For example, in Kafka, the API provides information about

how far behind the consumer is from the producer. This information can be used to adjust

the rate of event production and consumption dynamically, depending on the consumer’s

load and availability. This way, the system can balance the trade-off between consistency

and performance by adapting to the changing conditions of the event-driven system.

54

5

Integrating the Generic Dyconit
System in to Event-Driven Systems

In this chapter, we address the third research question (RQ3). We translate the require-

ments from the previous chapter into an implementation and provide context on the choices

made during implementation. To validate the feasibility and effectiveness of our proposed

Dyconit system for EDAs, we introduce Hestia. Drawing inspiration from Greek mythol-

ogy, Hestia is named after the Greek goddess of the hearth, home, and domesticity, who

represents the centrepiece of a harmonious household and family in myth. Similarly, our

system serves as the central force that maintains consistency among various components in

EDAs. This analogy highlights the significance of stable, reliable consistency mechanisms

in the world of EDAs.

We implement a functional prototype that embodies the core aspects of the design1. We

first outline the implementation decisions and their relation to the design requirements in

Section 5.2. We describe the technical specifications and architecture of our prototype in

Section 5.1. Finally, we discuss the challenges that we faced during the integration process

in Section 5.3.

5.1 The Implementation of Hestia

This section presents a working prototype of a Hestia, a generic Dyconit system for EDAs,

following the FRs from Chapter 4. First, we show how we support various communication

patterns in EDAs (§5.1.1). Next, we explain how the Hestia Admin and Hestia Overlord

1https://github.com/JurreBrandsen1709/dyconits_kafka

55

https://github.com/JurreBrandsen1709/dyconits_kafka

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

manage their respective Dyconit collections (§5.1.2). Then, we discuss how we ensure

Dyconit consistency in EDAs (§5.1.3). Finally, we describe how we enable the creation

and dynamic adjustment of custom policies for consistency bounds (§5.1.5).

5.1.1 Event-Driven Architecture Support

As discussed in Section 3.4, Apache Kafka enables various communication patterns among

applications. We use the Confluent.Kafka library for .NET, which offers a rich set of

APIs and abstractions to interact with Apache Kafka. This library allows us to create and

configure producers and consumers, as well as applications that can act as both.

Despite the availability of this rich API, the existing API was not sufficient to integrate

Dyconits into our Kafka-based system. Dyconits introduces specific requirements and

enhancements that had to be incorporated into the existing Kafka infrastructure. We aug-

mented the functionalities of the Confluent.Kafka library to accommodate the unique

features of Dyconits and ensure seamless integration with our system. The following mod-

ifications were made:

5.1.1.1 HestiaMessage

Kafka allows microservices to communicate through streams of events. An event in Kafka

typically is a record of something that happened, such as a user action, a sensor reading or

an entry log. Each event in the Confluent.Kafka library is called a Message and consists

of a key and a value. The key is a unique identifier that determines which partition the

event belongs to. The value is the actual data that the event carries, such as a JSON object

or a plain text string. Determining the numeric value of an event requires a way to assign a

weight to each event. For this reason, we extended the Message class of Confluent.Kafka

to the HestiaMessage class. Now, users can also specify a weight for each event sent, in

addition to a key and a value.

5.1.1.2 HestiaConsumerBuilder

Kafka uses the ConsumerBuilder method to create a consumer class. To ensure a new con-

sumer communicates its consistency bounds to the HestiaOverlord, we created a wrapper,

HestiaConsumerBuilder. This wrapper not only initializes the consumer but also carries

the consistency bounds. It requires the HestiaAdmin port and consistency bounds as ad-

ditional parameters.

56

5.1 The Implementation of Hestia

On initialization, the class sends a newAdminEvent to the HestiaOverlord, containing

the consistency bounds and admin port reference. The HestiaOverlord then informs all

relevant HestiaAdmins (Section 4.6).

5.1.2 Keeping Track of Dyconit Collections

In Hestia, dyconits are managed by a central node called the HestiaOverlord. This node

coordinates the communication and consistency levels among different components of the

system. It also maintains multiple Global Collections, which define the policies and rules

for each dyconit. The HestiaOverlord has several subcomponents called HestiaAdmins,

which monitor and control individual consumers. They ensure that the consumers follow

their specified consistency levels and report their dyconit states to the HestiaOverlord.

They can also request adjustments to the consistency levels when needed. The main

tasks of the HestiaOverlord are policy parsing, heartbeat messaging, active node tracking

and admin client communication. When the HestiaOverlord is started, it initialises the

GlobalCollection and then runs three concurrent methods: ParsePolicies, ParseEvent,

and ManageAdmins. We will now explore each one of them in more detail.

5.1.2.1 Global Collection

The global collection uses the JSON data format, which is versatile and easy to integrate.

The collection has a clear and intuitive naming convention, where the key matches the

collection name and the values are nested key-value pairs. The collection has four consistent

keys: PolicyThresholds, PolicyRules, Hosts, and Bounds. These keys have the following

meanings:

• PolicyThresholds: These are the conditions or limits that trigger an action when

met or exceeded.

• PolicyRules: These are the actions or outcomes that occur when a policy threshold

is met or exceeded.

• Hosts: These are the hosts that belong to the same dyconit collection and share the

same policies and rules.

• Bounds: These are the bounds for staleness and numerical error for each host in

the collection, which define the acceptable range of data quality and accuracy.

57

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

5.1.2.2 ParsePolicies

The HestiaOverlord has to process the policies that define the dyconit collections, thresh-

olds, and rules. These policies are stored as JSON files in a specific directory. The system

first checks if the directory exists. Then, it reads each policy file and parses the JSON con-

tent. It extracts the important details about each dyconit collection and validates them

for consistency and accuracy. It also updates the Global Collection with the new or

modified information about the dyconit collections.

5.1.2.3 ParseEvent

The ParseEvent method in the HestiaOverlord class handles the messages received from

the admin clients in the system. The messages contain various types of information or

requests that require different actions from the HestiaOverlord. The method takes a

message as a parameter, which can be a string or a serialized object. It first determines

the message type, which can be one of several predefined types. Depending on the message

type, it performs different actions:

• newAdminEvent: A new event has occurred in an admin client, such as joining or

leaving a dyconit collection. The method extracts the event type and the associated

data from the message and updates the state of the system accordingly. It may also

trigger specific behaviours or notify other components based on the event type.

• heartbeatResponse: An admin client has responded to a heartbeat message sent by

the HestiaOverlord. The method updates the heartbeat status of the corresponding

node in the system, marking it as active and responsive.

• throughput: An admin client has sent its current throughput value to the HestiaOverlord.

The method extracts the throughput value from the message and uses it to update

the relevant data or trigger specific actions related to throughput management.

5.1.2.4 ManageAdmins

The ManageAdmins method in the HestiaOverlord class implements this functionality as

shown in Algorithm 1. The method is an asynchronous task that runs continuously in a

loop with a certain time interval.

58

5.1 The Implementation of Hestia

Algorithm 1: Heartbeat Management
Result: Keep track of active nodes, remove inactive nodes (unless heartbeat

message is received), and send heartbeat messages to admin clients
while true do

Wait for a specific time interval;
Check the heartbeat status of all nodes in each dyconit collection;
foreach node do

if heartbeat message is received from the node then
Continue to the next node without removing it;

end
if node is inactive then

Remove the node and notify other nodes;
end

end
Send heartbeat messages to all admin clients in each dyconit collection;

end

The method iterates over each dyconit collection in the Global Collection and checks the

heartbeat status of all nodes in each collection. For each node, it verifies if a heartbeat

message has been received from it. If so, it skips the node and proceeds to the next one. If

not, it checks if the node is inactive and removes it from the collection. It also notifies other

nodes about the removal. After checking all nodes, the method sends heartbeat messages

to all admin clients in each collection, requesting a response.

5.1.3 Enforcing Dyconit Consistency

Hestia relies on a core functionality that ensures dyconit consistency. This functionality is

implemented by the HestiaAdmin class, which extends and utilises the Confluent.Kafka

administrative client. The HestiaAdmin class employs several methods to enforce consis-

tency. These include two methods for bounding Staleness and Numerical Error, as well

as other methods that handle sending and receiving syncRequests. Furthermore, the

HestiaAdmin also ensures that incoming events and local events are integrated correctly

and decides if the consumer can commit its local events. The subsequent subsections

elaborate on each functionality individually

59

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

Algorithm 2: Bound Staleness
Result: Return the local data after checking and updating the staleness bound

for each port in the collection
result ← UpdateLocalData(localData, collectionName);
portsStalenessExceeded ← [];
foreach port in ports do

timeDifference ← consumedTime - lastTimeSincePull;
if timeDifference > staleness then

portsStalenessExceeded.Add(port);
end

end
if no ports exceed staleness then

return result;
end
if optimisticMode then

RequestUncommitedEventsAsync(portsStalenessExceeded, collectionName);
return result;

end
else

RequestUncommitedEvents(portsStalenessExceeded, collectionName);
end
return result ← UpdateLocalData(localData, collectionName);

5.1.3.1 Bounding Staleness

Algorithm 2 describes the BoundStaleness algorithm, which ensures that each node in a dy-

conit collection has events that are within a certain freshness range and avoids stale or out-

dated data. The algorithm requires four inputs: consumedTime, localData, collection,

and collectionName. The consumedTime represents the time when the consumer processed

the event. The localData consists of a list of local and uncommitted ConsumeResults.

The collection is a JSON data structure that stores information about the local dyconit

collection, such as the staleness bound, the ports of other nodes, and the last time since

pull for each node. The collectionName identifies the name of the local dyconit collection.

The algorithm aims to bound the staleness error among consumers within a local dyconit

collection. The algorithm involves the following steps:

60

5.1 The Implementation of Hestia

1. Get latest data from other consumers

We first update the local data with the latest data from the other consumers for the

given dyconit collection. This ensures that we have a consistent view of the data

before checking for staleness.

2. Check for staleness bound violations

The second step is to compare the consumption time of the new event with the last

interaction time with each other consumer in the local dyconit collection. The last

interaction time is the time when the consumer last exchanged events with another

consumer in the same collection. If the difference between the consumption time and

the last interaction time exceeds the staleness bound, then there is a violation.

3. Request uncommitted events

In the third step, the requester asks each consumer that has exceeded the staleness

bound to send all their uncommitted events since the last interaction. After sending

their uncommitted events to the requester, the consumers can commit them. De-

pending on the policy, the requester may operate in an optimistic mode, where it

does not wait for the synchronisation process to finish.

5.1.3.2 Bounding Numerical Error

Algorithm 3 describes the BoundNumericalError algorithm, which ensures that each node

in a dyconit collection has events that are within a certain numerical range to avoid too

much inconsistency. A new event is an event that has an associated weight, which rep-

resents the amount of numerical error that it introduces. Our numerical error bounding

mechanism is activated after the staleness bounding mechanism.

The algorithm aims to bound the numerical error among consumers within a local dyconit

collection. The algorithm involves the following steps:

1. Get latest data from other consumers

We first update the local data with the latest data from the other consumers for the

given dyconit collection. This ensures that we have a consistent view of the data

before checking for staleness.

2. Check for numerical error bound violations

The second step is to compare the weight of the new event with the numerical error

61

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

Algorithm 3: Bound Numerical Error
Result: Return the local data after checking and updating the staleness bound

for each port in the collection
result ← UpdateLocalData(localData, collectionName);
error ← calculateNumericalOrderError(collection);
if error > numericalBound then

RequestUncommitedEvents(portsInCollection, collectionName);
end
return result ← UpdateLocalData(localData, collectionName);

bound for each other consumer in the local dyconit collection. The numerical error

bound is a predefined threshold that determines the maximum allowable numerical

error for each consumer. If the weight of the new event exceeds the numerical error

bound, then there is a violation.

3. Request uncommitted events

In the third step, the requester asks each consumer that has exceeded the numerical

error bound to send all their uncommitted events since the last interaction. After

sending their uncommitted events to the requester, the consumers can commit them.

5.1.4 Communication between HestiaAdmins

The HestiaAdmin that detects a bound violation must obtain all uncommitted events from

the consumers in the same collection by sending a synchronisation request. These synchro-

nisation requests are sent and received asynchronously, so they may arrive at different

times. To synchronise them properly, we use Algorithm 4. This algorithm checks that the

events received are not older than the events already processed by the consumer. If they

are not, it merges the uncommitted events by taking the union of the local and received

events. If the size of the union is different from the size of the local events, meaning that

more events were received than are consumed locally, it sets the ‘changed’ boolean to true.

This informs the consumer that synchronisation has taken place and that all processed and

received events up to that point can be committed.

The HestiaAdmin keeps all relevant properties associated with a consumed event, such

as the topic, partition, offset, and timestamp, by synchronising the entire ConsumeResult

object rather than just the message content because we need the complete ConsumeResult

to commit an event. The synchronisation process is facilitated by various wrapper classes,

62

5.1 The Implementation of Hestia

Algorithm 4: Merge events
Result: The synchronised event collection and a boolean indicating whether any

changes were made
if ReceivedEvents is not empty then

filter ReceivedEvents to keep only items with the same topic as collectionName;
end
if ReceivedEvents.count < LocalEvents.count then

changed ← false || _synced;
return SyncResult(LocalEvents, changed);

end
MergedEvents ← LocalEvents ∪ ReceivedEvent;
changed ← MergedEvents == LocalEvents;
return SyncResult(MergedEvents, changed);

such as ConsumeResultWrapper, MessageWrapper, and HeaderWrapper. These wrappers

allow synchronisation between HestiaAdmin objects by encapsulating the consumed mes-

sages and their associated metadata. Moreover, the SyncResult class encapsulates the out-

come of synchronisation operations, providing a structured representation of the changes

made during the process.

To compare local ConsumeResults and received ConsumeResults, we implemented a cus-

tom comparer class, ConsumeResultComparer, which enables comparison of consumed mes-

sages based on their offset and topic.

Furthermore, the decision to commit messages is based on the presence of uncommit-

ted consumed messages and the result of the synchronisation process. The consumer class

invokes the CommitStoredMessages method if there are uncommitted messages or any

changes detected during synchronisation. This step ensures that the processed messages

are permanently stored and will not be reprocessed in subsequent iterations or system

restarts, contributing to data reliability and consistency.

5.1.5 Custom Policies for Adjusting Consistency Bounds Dynamically

One of the main challenges of implementing a system that supports dynamic consistency

bounds is to provide a mechanism for software engineers to specify the conditions and ac-

tions that trigger the adjustment of the bounds according to the functional requirements of

63

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

the application. To address this challenge, we designed a policy-based approach that allows

software engineers to create policies in JSON format that define the rules for changing the

consistency bounds. A policy consists of several elements:

• The policy name, which indicates the goal and the scope of the policy.

• The collections that are affected by the policy.

• The thresholds that define the limits or targets for relevant metrics or variables.

These can be used to measure the performance or quality of the application. For

example, a policy may set a threshold for the consumer’s throughput, which is the

rate of processing messages from a topic. Other examples of thresholds are latency,

availability, error rate, etc.

• The parameters that are needed for advanced policies. These can be used to fine-tune

the policy behaviour or logic. For example, a policy may require a smoothing factor

or a window size as parameters.

• The rules that specify the logic for adjusting the consistency bounds. Each rule has

a condition and an action. The condition is a logical expression that evaluates to

true or false based on the values of the metrics or variables. The condition format is

‘{variable} {operator} {threshold}’ For example, a condition may be ‘throughput ≤

1000’, which means that the throughput is below the threshold. The action is a

function that calculates a new value for the consistency bound based on the operator

and the value in the rule. For example, an action may be ‘+0.1’, which means that

the consistency bound should be increased by 0.1 units. The action applies to either

the staleness or the numerical order error bound, depending on the collection type.

Listing 4 shows an example of a policy that applies to two collections and has one rule

that increases the staleness bound by 0.2 if the throughput is lower than 500.

By using this policy-based approach, software engineers can express their functional re-

quirements in terms of consistency bounds and their dependencies on various metrics or

variables. The system then interprets and executes these policies at runtime to adjust the

consistency bounds dynamically.

64

5.1 The Implementation of Hestia

{

"Policy Name": "Increase Staleness Bound",

"Collections": ["Collection_1", "Collection_2"],

"Thresholds": { "Throughput": 500 },

"Rules": [

{

"Condition": "Throughput < Threshold",

"Actions": [

{

"Target": "Staleness",

"Operator": "+",

"Value": 0.2

}

]

}

]

}

Listing 1: Sample JSON Policy

5.1.5.1 Calculating Throughput

One of the metrics that can be used to define policies for adjusting consistency bounds is

throughput, which measures the rate at which a consumer processes messages from a topic.

To calculate throughput, we present Algorithm 5, that outlines the process of computing

the throughput per consumer for a given topic.

The process begins by retrieving the metadata associated with the given topic, which in-

cludes information about its partitions. For each partition, we proceed to extract the

previous offset and timestamp from a dictionary that maintains a record of offsets for each

partition. It is important to note that if no previous offset is found, we initialize the offset

to 0. Subsequently, we calculate the current offset and timestamp for the partition in ques-

tion. To ascertain the consumption rate, we compute the difference between the current

and previous offsets and divide it by the time difference in seconds, thereby representing

the rate at which the consumer processes messages from that specific topic partition. The

consumption rate is then added to the cumulative value of the topic’s throughput. By using

this algorithm, we can measure the throughput of each consumer for each topic and use

65

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

this metric as an input for defining policies for adjusting consistency bounds dynamically.

5.2 Implementation Choices

This section explains the implementation choices, how they correspond to the design prin-

ciples and how they fulfil the requirements specified in Chapter 4.

5.2.1 Selecting the Message Broker

We chose to use Apache Kafka as the message broker in our implementation of the Event-

Driven Architecture. The selection of Apache Kafka stems from a comprehensive evaluation

of various message broker solutions based on several criteria. Firstly, Apache Kafka can

be easily integrated with C# applications using the Confluent.Kafka library 1, which is

a .NET client for Apache Kafka that supports .NET Core and .NET Framework. The

Confluent.Kafka library provides a producer and a consumer class that can be used to

send and receive messages from Kafka topics. Secondly, Apache Kafka provides robust met-

rics and monitoring capabilities. Apache Kafka ensures that the messages it processes are

arranged in a strict sequence. This feature of Apache Kafka makes it appropriate for our im-

plementation, as it eliminates the order consistency error. Thirdly, the distributed nature

of Apache Kafka enables horizontal scalability, accommodating high message throughput

and ensuring efficient handling of peak loads. Lastly, the decision to utilize Apache Kafka

over Azure Event Hub was driven by the desire to avoid vendor lock-in, ensuring the flexi-

bility to migrate our system to different infrastructure providers in the future if necessary.

Unlike Azure Event Hub, which is a Platform as a Service (PaaS) offering that requires us

to rely on Azure’s managed infrastructure and services, Apache Kafka is an open-source

software that can be deployed on any cloud or on-premise environment. This gives us more

control over the configuration and customization of our message broker solution, as well as

lower operational costs and higher portability.

5.2.2 Selecting the Programming Language

.NET was our choice of language, primarily for its profound support for event-driven pro-

gramming. Its event model simplifies event-related tasks, positioning it favourably against

Java or Scala. Secondly, C# in the .NET ecosystem offers an expressive syntax, foster-

ing rapid development and reducing the learning curve in comparison to other languages.

1https://github.com/confluentinc/confluent-kafka-dotnet

66

https://github.com/confluentinc/confluent-kafka-dotnet

5.3 Implementation Challenges

Thirdly, .NET is widely used in EDA applications that Info Support produces, demonstrat-

ing its relevance and effectiveness for our specific needs. Finally, the ability to integrate

effortlessly with our chosen message broker, Apache Kafka, further validated this choice.

5.2.3 Selecting the Policy format

For crafting custom dynamic policies, JSON was our choice of data format. The decision

hinged on several factors: the readability of JSON, its intuitive key-value structure, and

its ubiquitous adoption among software engineers. This choice was bolstered by the need

for a format that was both human-friendly and machine-optimized, streamlining the policy

creation process.

5.3 Implementation Challenges

In this section, we discuss the main challenges that we faced while implementing Hestia.

We categorize these challenges into three high-level groups: integration with Kafka-based

System, data processing and validation, and asynchrony. We also describe the specific

challenges that we encountered within each group and how we addressed them.

5.3.1 Integration with Kafka-based System

We used the Confluent.Kafka library as our message broker for implementing Hestia.

However, this library did not support some of the features that we needed, such as staleness

and numerical order error bounds. To address this issue, we extended and modified some

of the existing classes and methods of the library, such as the Message class and the

ConsumerBuilder. We also added our own classes, HestiaAdmin and HestiaOverlord

that managed the communication with the Kafka infrastructure and the dyconits and

their consistency bounds.

5.3.2 Data Parsing, Validation, and Calculation

Hestia receives various types of messages from the admin clients, such as policy messages,

heartbeat messages, throughput messages, etc. Each message type required a different

action from the system, such as updating the Global Collections, triggering specific be-

haviours, or notifying other components. Therefore, we had to implement a robust mes-

sage parsing and handling mechanism that correctly interpreted and responded to different

message types. We used JSON parsing techniques and exception handling mechanisms to

address this challenge.

67

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

5.3.3 Asynchronous Methods

Hestia is designed to run continuously in the background, performing certain tasks at

specific time intervals, such as calculating throughput, sending heartbeat messages, or

adjusting consistency bounds. These tasks were asynchronous, meaning that they did not

block the main thread, and they could run in parallel. However, this also introduced some

challenges regarding synchronisation and ordering of tasks. The main challenge that we

faced was scheduling and executing periodic tasks: Hestia had to perform various tasks at

regular intervals without blocking the main thread or interfering with each other.

68

5.3 Implementation Challenges

Algorithm 5: Calculate Throughput
Result: The calculated throughput per consumer
if consumer is null then

return
end
Initialize offsets as an empty dictionary;
Retrieve the partitions for the specified topic from the metadata;
foreach partition in partitions do

Create a topicPartition object for the current partition;
Retrieve the previous offset for the topic partition;
if previousOffset is unset then

Set previousOffset to 0;
end
Add the topicPartition and its corresponding previousOffset to the offsets
dictionary;

end
Delay the execution for 5 seconds;
Initialize topicThroughput as 0.0;
foreach partition in partitions do

Create a topicPartition object for the current partition;
Retrieve the previous offset and timestamp from the offsets dictionary;
Retrieve the current offset for the topic partition;
if currentOffset is unset then

Set currentOffset to 0;
end
Set currentTimestamp to the current time;
Calculate the consumption rate as the difference between currentOffset and
previousOffset divided by the time difference in seconds;

Add the consumption rate to topicThroughput;

end
Create a JSON object containing the calculated topic throughput, admin port,
and topic information;

Send the JSON object as a message over TCP;

69

5. INTEGRATING THE GENERIC DYCONIT SYSTEM IN TO
EVENT-DRIVEN SYSTEMS

70

6

Evaluation of the Performance of a
Generic Dyconit System:
Experimental Design and Results

Hestia is a prototype implementation of the Dyconit consistency model for event-driven

systems, which allows for fine-grained and dynamic control of consistency levels in event-

driven systems. In this chapter, we present the experimental design and evaluation of

Hestia, answering RQ4. In Section 6.1, we present how we designed synthetic workloads

based on interviews with domain experts. We describe the experiment setup in Section 6.2.

We explain the experiment deployment in Section 6.4. We discuss the experiment config-

uration in Section 6.5, including how we set the boundaries, variables, and delays for the

experiment. Section 6.6 outlines the research questions, hypotheses, and metrics cover-

ing topics from topology impact to sensitivity analysis. Lastly, Section 6.7 presents the

findings and their implications.

6.1 Designing Synthetic Workloads Based on Interviews with
Domain Experts

In this section, we present how we designed synthetic workloads to evaluate Hestia in

realistic settings. These workloads reflect the real-world challenges and scenarios that

domain experts face in event-driven environments. We obtained these insights from semi-

structured e-mail interviews with five domain experts who work with event-driven systems

in different fields, such as e-commerce, transport, and finance (Appendix 8.1). Based on

their responses, we derived three representative workloads that capture different aspects

71

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

of how event-driven systems behave. This approach was more feasible and reliable than

integrating the prototype into live applications, which would pose practical challenges such

as potential disruptions, complex integration requirements, and dependencies on external

factors. Similarly, obtaining real-world event traces was difficult due to privacy concerns,

data availability limitations, and the proprietary nature of such traces. By leveraging the

expertise and experiences of these domain experts, we aim to enhance the authenticity

and applicability of our experimental evaluations, as well as to simulate and evaluate the

behaviour of Hestia in a controlled environment.

From the email interviews with the domain experts, we identified several key factors that

influence event-driven systems. We observed that all workloads shared similar patterns:

they experienced periods of high and steady event rates, regardless of the sector. We

also discovered that the priority of events varied depending on the type of workload. For

instance, logging events were low-priority but very frequent. This was relevant for our

experiment because our Dyconit implementation can offer different levels of consistency

for different events. Therefore, we could apply more strict consistency for high-priority

events than for low-priority logging events. The interviews also revealed variations in the

sizes of events processed by these systems. Logging events are small, ranging from 10 to

50KB. Higher priority events tend to be larger in size. One interviewee said that they had

to cut a priority event into smaller pieces because it exceeded the Kafka max message size,

while in other domains this was not necessary. Another interviewee said that their priority

events were around 1MB in size. These events are clearly larger than the logging events.

The final insight we can draw from these interviews is the distribution between logging and

priority events. This tended to be an 80/20 ratio, where 80% of the events were logging

events, and the remaining 20% were priority events.

Based on the insights from the interviews, we designed three distinct workload patterns to

evaluate the performance of our prototype under various scenarios. These patterns repre-

sent the diverse types of workloads that the domain experts discussed in their interviews.

In each workload, events are distributed across two different topics, with an 80/20 ratio,

to emulate the varying priorities of events. Several interviewees mention this is standard

practice. The topic with 80% of the events processes smaller events with a size of 1 KB,

while the topic with 20% of the events processes larger events with a size of 10 KB. We

chose these sizes to have a clear difference between priority and normal logging events.

The smaller events are more frequent and less complex, while the larger events are rarer

72

6.1 Designing Synthetic Workloads Based on Interviews with Domain
Experts

and more detailed. This reflects the trade-off between timeliness and completeness that

the domain experts expressed in their interviews. Using events of these sizes allows us to

avoid splitting them into multiple events, which would introduce additional overhead and

complexity in our prototype.

Each workload runs for a duration of 300 seconds. For simplicity and clarity in evalu-

ation, we assigned a weight of 1.0 to each event. Although our prototype supports any

non-zero positive weight, we chose a uniform weight of 1.0 to ensure a clear and straight-

forward analysis of the system performance under different workloads, avoiding potential

complexities and ambiguities arising from differing event weights. We can classify the

different synthetic workloads we used into three categories:

W1 The first workload is a constant rate where the Kafka consumers are undersaturated.

This workload is meant to represent the average load on the system during non-peak

moments in the interviews. This pattern simulates a normal and predictable traffic

situation, where the producers and consumers are balanced, and the system is stable.

W2 The second workload is a fluctuating workload, alternating between undersaturation

and over saturation of the Kafka consumers. The transition between the minimum

and maximum is linear. This pattern simulates a moderate and gradual variation of

traffic over time, aligning with observations of distinct patterns and peaks throughout

the day, as shared by some experts in their systems. The fluctuation repeats mul-

tiple times to simulate different stages of high and low throughput of events. This

will result in a saw-tooth like pattern, which can test adaptability of our Dyconit

prototype of the system under varying load conditions.

W3 The third workload is a workload where the Kafka consumers are constantly over-

saturated. This workload is meant to simulate the worst-case scenario of the system,

where the demand exceeds the supply and the system cannot keep up with the incom-

ing events. This pattern simulates a sudden and extreme spike of traffic, which could

be caused by an unexpected increase in events. This will result in a large backlog of

events in the Kafka topics, which can affect the performance and consistency of the

system.

73

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

6.2 Experiment setup

Having presented how we designed the synthetic workloads based on interviews with EDA

experts at Info Support, we present the remainder of the experimental setup. Here, we

explain what network topologies were used in the experiments to confirm that Dyconits

are generically applicable in various scenarios. Additionally, we discuss which policies were

tested to evaluate the impact of dynamic consistency on performance.

6.2.1 Network Topologies’ Impact on Performance and Behaviour

The topology of the event-driven system is another important factor to consider. It de-

scribes how events are generated, delivered, and processed by various components in the

system. The topology affects the performance and consistency of the system, as it influ-

ences aspects such as network delay, bandwidth usage, and fault resilience. To evaluate the

prototype Dyconit consistency model, we need to measure its performance under different

topologies that reflect the characteristics of general event-driven systems. By conducting

experiments with various topologies, we aim to verify whether the prototype can sup-

port multiple event-driven systems as claimed. This analysis will enable us to understand

the prototype’s adaptability and generalizability, ensuring that it can cope with different

topologies that are typical in real-world event-driven settings.

In our experiments, we considered a scenario where all consumers perform the same task

and can exchange data with each other. If a service experiences a lag, it can request the

processed data from another service via the broker. Then, the service can resume its con-

sumption from the broker with the offset that corresponds to the received data, instead of

continuing from the previous offset. This way, no extra processing time is needed, as we

assume that the data has already been processed by other services.

For our experiments, we selected two topologies that we identified as the most common

ones in the analysis of event-driven systems and their requirements in Chapter 3. These

are the star-topology and the multi-hop topology. The star-topology consists of a central

broker that acts as a hub for all events in the system. Producers send events to the broker,

which then distributes them to consumers based on their subscriptions. The multi-hop

topology consists of a network that forms a chain or a tree for event routing. Producers

send events to one or more brokers, which then forward them to other brokers or con-

sumers based on their subscriptions. By comparing the prototype Dyconit consistency

74

6.2 Experiment setup

Figure 6.1: Two common ways of routing events in event-driven systems: the star and
the multi-hop topologies. In the star topology, a central broker connects all producers and
consumers. In the multi-hop topology, a network of brokers and consumers forms a chain or
a tree. The figure also shows the topics and services involved in each topology

Producer
topic A

Producer
topic B

Consumer

ConsumerConsumer

Consumer

(A,) (B,)

(A,)

(B,)

(A,)(B,) (A,)(B,)

(A,)

(B,)

(a) Star topology with two producers and four con-
sumers.

Producer
topic A

Producer
topic B

ConsumerConsumer

(A,) (B,)(A,)
(B,)

(D,)
(C,)

(D,)
(C,)

Producer
topic C

Consumer

(C,)

(A,)
(B,)

Producer
topic D

Consumer

(D,)

(b) Multi-hop topology with four producers and
four consumers, two of which are co-located in a
single service.

model under these two topologies, we aim to evaluate the generality of the Dyconit model

in event-driven systems

Figure 6.1 illustrates the star and multi-hop topologies, respectively. The star topology

consists of two producers and four consumers, while the multi-hop topology comprises four

producers and four consumers, two of which are co-located in a single service. This service

consumes events from topics A and B and produces events for topics C or D, depending on

the input. A single broker mediates the event flow between all producers and consumers,

as indicated by the arrows.

6.2.2 Effects of Dynamic Policies on Consistency

The final aspect to examine is the policy that determines how the prototype Dyconit sys-

tem adapts its boundaries during execution. The policy defines when, how often, and by

how much the boundaries should be changed based on either the synchronisation through-

put or the message throughput. The right policy could have a significant impact on the

trade-off between consistency and performance achieved by Hestia, as it determines how

responsive and adaptive it is to changing conditions.

To explore how different policies affect Hestia, we experimented with four types of policies:

none, simple, moving average, and exponential smoothing. These policies are defined in

Section 4.5 and their JSON representations are given in Appendix ??. Our main interest

in using different policies is to see how they affect the effectiveness of Hestia in achieving

75

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.1: The definitions and units of the five metrics used to evaluate the performance
of our system in our experiments: consumer lag (CL), message throughput (MT), overhead
throughput (OT)

Metric Definition Unit

Consumer lag (CL) The maximum delay between any two services Seconds
Message throughput (MT) The number of event-related messages sent or

received by the system per second
Messages/second

Overhead throughput (OT) The number of synchronisation-related messages
sent or received by the system

Messages/second

its goals of providing tailored consistency levels and reducing synchronisation overhead.

By varying the policies, we aim to observe how the boundaries of the Dyconits change

over time and how that influences the consistency and performance metrics of the system.

We also aim to compare and contrast the advantages and disadvantages of each policy,

as well as to identify the best policy or combination of policies for different scenarios and

requirements.

6.3 Metrics and Data Collection

We used logging during the execution to collect data and measurements for the experiments.

The prototype logs data about the system itself, such as the number of messages consumed,

the throughput of event messages and synchronisation messages, the current consistency

bounds and the latency between sending and receiving a synchronisation message. We

analyse this data to understand how the system is performing and to check if it meets the

NFRs we defined in Section 4.1.2.

In Table 6.1, the definitions and units of the five metrics used to evaluate the performance

of our system in our experiments are shown: consumer lag (CL), message throughput

(MT) and overhead throughput (OT). The first metric, consumer lag (CL), indicates how

consistent the system is at time t. It is defined as the maximum delay between any two

services in the system, measured in seconds. A lower CL means that the services have a

more up-to-date view of the system state. The second metric, message throughput (MT),

compares how efficient the system is in handling events at time t. It is defined as the

number of event-related messages sent or received by the system per second. A higher

MT means that the system can process more events in a given time. The third metric,

overhead throughput (OT), measures how much overhead is caused by the dyconit system

at time t. It is defined as the number of synchronisation-related messages sent or received

76

6.4 Experiment Deployment

by the system per second. A lower OT means that the system does not incur much extra

communication cost when using Dyconits.

6.4 Experiment Deployment

A central feature of our experimental system deployment is that each service runs in its

own dedicated container. This mirrors the approach taken in real-world applications, where

services are typically isolated in individual containers, often orchestrated by systems like

swarm or Kubernetes. The deployment of our system is orchestrated using Docker Com-

pose1, an essential tool for defining and managing containerized Docker applications. This

section delves into the architecture, the reasons behind using Docker, and the hardware on

which the experiments are run.

• System Architecture: Our system consists of five main components: Apache

ZooKeeper, Apache Kafka Broker, Custom Workload, Dyconit Overlord, and Ap-

plication services. Crucially, each of these components is deployed in its own

distinct container. Below, we describe each component in more detail.

• Apache ZooKeeper: As a centralized service for maintaining configuration, nam-

ing, distributed synchronisation, and more, ZooKeeper operates within its dedicated

container. It’s deployed using the image confluentinc/cp-zookeeper:7.3.0 and acts as

the coordination layer for the Kafka broker.

• Apache Kafka Broker: Kafka, a distributed event streaming platform, is respon-

sible for communication within the system. It, too, is contained in its own environ-

ment, deployed via the image confluentinc/cp-kafka:7.3.0, and works in tandem with

ZooKeeper.

• Workload service Depending on the specific experiment executed, the workload

service runs one of three workloads, all within its separate container.

• Dyconit Overlord Service Dedicated to dyconit-related messaging, the Dyconit

overlord service processes messages, tracks application services, and adjusts bounds

based on active policies – all within its container environment.

• Application Services Running in their individual containers, these services embody

custom applications that contribute to the experimental setup. They’re developed in
1https://docs.docker.com/reference/

77

https://docs.docker.com/reference/

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

.NET and originate from specific Dockerfiles, interacting with one another and the

Kafka broker to create a variety of network topologies.

6.4.1 Motivation for using Docker and Docker Compose

Embracing Docker and Docker Compose for our experimental deployment ensures each

service’s autonomy in a dedicated container. Containers encapsulate applications along

with their environments, isolating them from external factors, which in turn guarantees a

consistent and controlled execution environment. Although the services are simulated on

the same network — introducing minimal latency in communication — we’ve implemented

a random processing delay for each event at the service level to simulate real-world con-

ditions. Refer to Section 6.5 for more details. Ultimately, Docker and Docker Compose

enable a controlled, reliable deployment, replicating the complexities of distributed systems

with realistic delays.

6.4.2 Hardware and Software Configurations

The host system is a Dell Latitude 5531 laptop, which is a standard model provided by Info

Support to all its employees. It has a 12th Gen Intel Core i7-12800H processor, running at

1.80 GHz, 32.0 GB of RAM and 1 TB of SSD storage. It runs Windows 11 Enterprise as

its operating system. The host system is connected to a Wi-Fi network with a bandwidth

of 200 Mbps.

In this project, we use several NuGet packages to manage our dependencies and enhance

our functionality. NuGet is a .NET package manager that facilitates the straightforward

installation and updating of libraries from a unified repository. The required packages

are specified in the .csproj file - an XML document outlining the project’s settings and

references. We integrated the following packages: Confluent.Kafka (1.9.3), which serves as

a client for Apache Kafka (a distributed streaming platform); Newtonsoft.Json (13.0.3), a

.NET JSON framework; and Serilog (3.0.1), a .NET application logging library.

6.5 Experiment Configuration

Our prototype has many tunable variables that affect its performance. One of these vari-

ables is the bounds, which is a mechanism that ensures synchronisation between two ser-

vices. The bounds can be either staleness or numerical error, which depend on the elapsed

time or the difference in numerical values between the services. Another variable is the

78

6.5 Experiment Configuration

policy, which defines the throughput thresholds and the actions to take when the current

throughput is above or below them. The policy also determines how the bounds are ad-

justed. To obtain specific and reliable results from our experiments, we fixed all of these

variables for each experiment. In addition, we introduced a random processing delay to

the consumption of each event to simulate the real-world scenarios. This delay represents

the time it takes for a service to process an event and update its state. This subsection

explains our choices of variables in more detail.

6.5.1 Configuration of the Boundaries

In the experiments, we use different predefined bounds for different topics. For the topic

that consumes the logging events, we set the staleness bound to 15000 ms and the numer-

ical error bound to 25. These settings allow for lenient consistency promises, as missing or

delaying a few logging messages is not critical, according to the expert interviews. How-

ever, for the topic that handles priority events, we use stricter bounds to ensure tighter

consistency assurance. Therefore, the staleness bound is 10000 ms and the numerical error

bound is 10. This configuration is beneficial because it offers a higher level of consistency

guarantee, which is vital for priority events. This way, we can ensure that high-priority data

is processed with the urgency it requires, reducing the risk of losing or delaying important

information.

6.5.2 Configuration of the Variables in the Policies

We use policies to dynamically adjust the boundaries based on changing workloads or

other environmental factors. Policies are designed to be highly customisable, as explained

in Section 4.5. We have designed three policies for our experiments. To compare the effect

of each policy, we kept them as similar as possible. The system evaluates the throughput

every 5 seconds. We set the throughput threshold to a fixed value of 1.2 for all policies.

Preliminary experiments had shown that this was an optimal value for the threshold,

given the modelled event processing delay we introduce. Depending on the delay and the

workload, this threshold could be exceeded or not. If the threshold was exceeded, we

increased the numerical bound by 1, allowing for an additional message lag compared to

the other services, and we increased the staleness bound by 1000 ms, allowing for a longer

time lag than before. By choosing these actions, we maintained realistic boundaries. Other

values tested in preliminary experiments resulted in either too loose or too tight boundaries,

or required to synchronise every consumed message.

79

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

6.5.3 Modelling Event Processing and State Update with Random De-
lays

We make a clear distinction between priority events and normal events. Priority events

are those that require immediate attention and processing, such as urgent orders or critical

alerts. Normal events are those that can be processed at a lower priority, such as logging.

The processing delay for priority events is between 300 and 900 ms for slow services and

200 to 600 ms for normal services, while for normal events this is between 30 and 90 ms for

slow services and 20 to 60 ms for normal operating services. These delays are proportional

to the importance of the events and reflect the different service-level agreements (SLAs)

that may exist in real-world scenarios.

We simulate the processing of events and the updating of state by introducing random

delays for the application services. We use two different configurations for the delays,

based on the input from domain experts. Two out of the four services in both topologies

will have delays ranging from 30(0) to 90(0) ms, representing services that take longer

to update due to various reasons. The other two services will have delays ranging from

20(0) to 60(0) ms, representing faster services. These delays are always the same for every

experiment, as we use a dictionary of predefined uniformly distributed values that depend

on the message we consume. These delays serve several purposes. First, they add realism,

as real-world systems are not instantaneous and have inherent processing and network

communication delays. Second, they model the unpredictability common in distributed

systems. Third, they stress-test the system and help us understand its behaviour under

suboptimal conditions. The selected delay range thus helps us get a general understanding

of the system’s performance across various conditions.

6.6 Experiment Design

To organize our experiments and results, we divided them into three groups based on their

objectives and focus:

G1 Performance Evaluation: This group includes the experiment that compares the

performance of Hestia against a baseline system without optimistic inconsistency.

The goal of this group is to demonstrate the benefits of adding optimistic inconsis-

tency to a distributed system, specifically targeting NFRs for low latency in sending

80

6.6 Experiment Design

Table 6.2: Experiment configurations.
(Notation: MT = Message Throughput, OT = Overhead Throughput, CL = Consumer Lag)

Experiment Topology Workload Policies Metrics
Group 1: Performance Evaluation
§6.6.1 Dyconit Impact T1 W2 P1 CL, MT
Group 2: System Configuration Evaluation
§6.6.2 Topology Impact T1,T2 W2 P1 CL, MT, OT
§6.6.3 Workload Impact T1 W1, W2, W3 P1 CL, MT, OT
§6.6.4 Policy Impact T1 W2 none, P1, P2, P3 CL, MT, OT
Group 3: System Behaviour Evaluation
§6.6.5 Sensitivity Analysis T1 W2 dynamic range CL, MT, OT

dyconit related messages and maintaining high throughput and low latency of the

system.

G2 System Configuration Evaluation: This group includes the experiments that

demonstrate the generality of Hestia by applying different policies, workloads, and

topologies. The goal of this group, closely related to the NFRs, is to show that the

system can handle various scenarios and requirements with different configuration

options, ensuring low overhead for the dyconit related messages and maintaining

system performance stability.

G3 System Behaviour Evaluation: This group includes the experiments that in-

vestigate how the system behaves under different conditions, such as scalability and

sensitivity. This group’s NFRs aim to understand how the system adapts to changing

workloads, parameter settings, and performance trade-offs.

The different experiments are carefully selected based on the NFRs proposed in the de-

sign on the Dyconit system in Section 4.1.2. As outlined above, our goal is to show that

the prototype we developed maintains a low latency in sending dyconit related messages,

ensures low overhead for the dyconit related messages, maintains a high throughput and

low latency of the system, and ensures that the performance remains stable. Table 6.2

summarizes the configurations of each experiment in terms of topology, workload, policies,

and metrics. We explain each experiment in detail in the following subsections.

We collect a range of metrics in these experiments. These metrics are relevant and impor-

tant for evaluating the performance of distributed systems because they reflect how well the

81

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.3: Variables and collected metrics for the Optimistic Inconsistency Impact experi-
ment.

Experiment Topology Workload Policies Metrics
§6.6.1 Dyconit Impact T1 W2 P1 CL, MT

systems can cope with the challenges of scalability, reliability, and efficiency in a dynamic

and heterogeneous environment, thus adhering to our NFRs. The Message throughput is

the number of messages delivered per second by the producer to the consumers. The Over-

head throughput resembles the number of dyconit related messages are sent per second.

Consistency lag is the difference in time between when a consumer receives an update and

when all other consumers receive the same update.

6.6.1 Optimistic Inconsistency in Hestia

Our primary interest lies in understanding the implications of integrating the dyconit con-

sistency model into an event-driven system. Specifically, we want to understand how this

model affects the consistency and performance of a system, especially when duplicated

consumers have the capability to share processed work among each other. The objective of

this experiment is to examine the influence of the dyconit model, particularly the optimistic

inconsistency mechanism, on Hestia’s performance. We intend to quantify the trade-offs:

How might system performance and data consistency interact and possibly counterbalance

each other in our prototype?

To conduct a robust analysis, we utilise workload 2, which modulates between under-

saturation and over saturation of consumers. This specific workload is chosen as it enables

us to test Hestia under varying operational conditions, thus providing a holistic view of the

system’s behaviour. Given that our central concern is discerning differences brought about

by the inclusion or exclusion of Dyconits, we opted for the simplest policy for comparison

purposes.

For this experiment, we have two distinct system versions:

• Version A: A system with the optimistic inconsistency mechanism activated.

• Version B: A baseline system that functions without the optimistic inconsistency

feature.

82

6.6 Experiment Design

Table 6.4: Variables and collected metrics for the Topology Impact experiment.

Experiment Topology Workload Policies Metrics
§6.6.2 Topology Impact T1,T2 W2 P1 CL, MT, OT

To ensure a fair comparison, we made certain that both these versions have analogous

configurations, which encompass topology, workload, and message size specifics. Table 6.3

furnishes detailed information about the configurations and metrics adopted for this ex-

periment.

6.6.2 Hestia’s Generality Across Topologies

The focus of this experiment revolves around the Hestia prototype and its applicability

across different system topologies. Distinct topologies possess varied attributes such as con-

nectivity, diameter, routing complexity, and fault tolerance. These characteristics could

potentially influence the performance and behaviour of distributed systems, including as-

pects related to consistency.

Our overarching aim is to emphasize the versatility and adaptability of the Hestia pro-

totype, positioning it as a system capable of functioning across diverse network structures

and communication patterns. To reinforce this claim, we have chosen to test our proto-

type in two representative topologies: star and multi-hop. These were selected due to their

capacity to represent a wide spectrum of possible scenarios while being relatively easy to

understand conceptually.

As highlighted in Table 6.4, we utilise workload 2, which modulates between undersat-

uration and over saturation of consumers. This specific workload is chosen as it enables us

to test Hestia under varying operational conditions, thus providing a holistic view of the

system’s behaviour. Through this systematic evaluation across different topologies, our

objective is to discern the efficacy of our prototype in adapting and excelling under varied

network conditions and communication modes.

6.6.3 Hestia’s Generality Under Varied Workloads

The primary goal of this experiment is to determine the impact of different workloads on

the performance and optimistic inconsistency of the Hestia Prototype. Different workloads

can have unique consequences on distributed systems, influencing aspects like congestion,

83

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.5: Variables and collected metrics for the Workload Impact experiment.

Experiment Topology Workload Policies Metrics
§6.6.3 Workload Impact T1 W1, W2, W3 P1 CL, MT, OT

latency, and load balancing.

We will test our prototype using three distinct workloads:

• W1: A standard workload characterized by a consistent message rate.

• W2: A bursty workload with a fluctuating message rate that alternates between

high and low peaks.

• W3: A peak workload with a message rate that exceeds the system’s capacity.

The specific parameters for each of these workloads are detailed in Table 6.5. Our choice of

a star topology is driven by its simplicity and efficiency, ensuring direct connections among

all services. The rolling average policy was selected because of its capacity to adjust to

shifting workloads.

6.6.4 Hestia’s Generality Under Varied Policies

Our primary goal is to explore the impact of different policies on the Hestia prototype.

We are interested in determining how these policies may impact Hestia’s adaptability,

consistency, and performance. To this end, we have chosen to examine three specific

policies in contrast to a scenario with no policy. The policies under consideration are:

• No Policy: As the name suggests, this approach maintains the bounds without any

adjustment.

• Simple Policy (P1): This approach imitates the behaviour of the TCP protocol.

The bounds increase by a fixed amount when there aren’t any pending messages, and

decrease by half when there’s an overflow of pending messages.

Table 6.6: Variables and collected metrics for the policy Impact experiment.

Experiment Topology Workload Policies Metrics
§6.6.4 Policy Impact T1 W2 none, P1, P2, P3 CL, MT, OT

84

6.6 Experiment Design

Table 6.7: Variables and collected metrics for the Sensitivity Analysis experiment.

Experiment Topology Workload Policies Metrics
§6.6.5 Sensitivity Analysis T1 W2 dynamic range CL, MT, OT

• Rolling Average (P2): This policy sets a dynamic threshold based on a rolling

average of message rates. Optimistic inconsistency is applied only when the volume

of pending messages surpasses this threshold.

• Exponential Smoothing (P3): It leverages a weighted average between the present

value and the preceding smoothed value to modify the bounds, granting more signif-

icance to recent data.

Additional variables related to our study can be found in Table 6.6. Our emphasis lies pre-

dominantly on contrasting the capability of these policies in managing irregular workloads,

often witnessed in real-world setups. Such workloads introduce variable and unpredictable

message rates, potentially leading to spikes in system load. As a representative sample,

we’ve incorporated the peak workload W3 in our experiment, marked by a high message

rate surpassing the system’s threshold.

6.6.5 Policy Parameter Effects on Hestia’s Performance and Consis-
tency

Our goal is to examine how the system responds to different policy settings. We used two

sets of parameters: one for the scales with thresholds (0.8, 1.0, 1.2, 1.4) and another for

the scaling with the increase in consistency bounds (+1,+2,+4,+8). We selected these

numbers based on preliminary tests that showed they provided a good contrast of policy

objectives. The thresholds cover both normal and extreme cases, while the increments in

bounds allow us to measure the system’s flexibility to both minor and major changes. With

this method, we created 16 variations of the moving average policy, each with a unique

pair of parameters, enabling a thorough assessment.

Our goal is to help software engineers design policies that suit different situations. These

situations often involve a trade-off between consistency and performance. We investigate

how Hestia reacts to different parameter settings, which are the core of our research. These

parameters, such as staleness bounds, numerical error bounds, and message weight thresh-

olds, determine when the system should deliver a message optimistically.

85

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.7 shows our experimental setup in detail. We want to understand how these

parameter changes affect the system’s performance and optimistic inconsistency. We keep

other variables, such as topology, workload, and policy, constant, so that we can focus

on the parameter variability. We choose a star topology for a clear network structure,

a fluctuating workload for a realistic operational environment. This way, we can isolate

the effects of parameter modifications and understand their implications on the system

performance. The data from different parameter settings will reveal how they shape the

system’s performance and optimistic inconsistency.

6.7 Experiment Results

This section presents the experiment results of our prototype. We evaluated the perfor-

mance of our prototype under different scenarios. We used several metrics to measure

the effectiveness and efficiency of our prototype, such as accuracy, latency, throughput,

and scalability. We also conducted scalability and sensitivity analysis to demonstrate the

robustness and practicality of our prototype.

6.7.1 Performance Analysis of Optimistic Inconsistency in Hestia

MF1 By using the Dyconit consistency model, Hestia reduces the inconsistency by about

70% for both priority levels, effectively bounding inconsistency.

MF2 Dyconits can selectively influence the consistency level of different message types and

prioritise certain message types over others.

MF3 Hestia introduces additional overhead, lowering the maximum throughput it can

reach by approximately 45% compared to the baseline system without Dyconits.

Figure 6.2 illustrates the impact of Dyconits on consumer lag for both priority and nor-

mal events across varying workloads. Consumer lag represents the time difference between

event production and consumption by clients. In this analysis, we compare two config-

urations: one with Dyconits disabled and another with Dyconits enabled. Dyconits is a

dynamic consistency adjustment system that tailors consistency levels to event priorities.

Starting with the evaluation of priority events, which demand robust consistency to ensure

data accuracy and freshness, we observe distinct trends in the two configurations. In the

86

6.7 Experiment Results

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

7

8

C
on

su
m

er
 L

ag
 [s

ec
on

ds
]

Dyconits Disabled - priority events
Dyconits Enabled - priority events

0 100 200 300 400 500 600 700 800
Events Consumed

0

1

2

3

4

5

6

7

8

C
on

su
m

er
 L

ag
 [s

ec
on

ds
]

Dyconits Disabled - normal events
Dyconits Enabled - normal events

Figure 6.2: The effect of Dyconits on the maximum consumer lag for priority and normal
events under a fluctuating workload.

setup without Dyconits, the maximum consumer lag reaches 7.304 seconds, with a mean

of 2.1224 seconds. This configuration exhibits noticeable inconsistency, as evidenced by

the escalation in consumer lag with increasing production rates of priority events. The

maximum consumer lag in the Dyconits-enabled configuration, on the other hand, is only

2.273 seconds, around 68.9% lower than the maximum lag without Dyconits. The mean

consumer lag in the Dyconits-enabled setup is 0.5101 seconds, which is approximately

76.0% lower than the mean lag in the absence of Dyconits. These figures demonstrate that

Dyconits can substantially mitigate consumer lag for priority events, particularly during

high saturation, resulting in faster and more accurate event delivery to clients.

Shifting our focus to normal events, which tolerate some inconsistency and staleness, we

notice another noteworthy contrast between the configurations. In the Dyconits-disabled

setup, the maximum consumer lag for normal events is 8.621 seconds, while the mean

lag is 1.905 seconds. In contrast, the Dyconits-enabled configuration achieves a maximum

lag of 3.913 seconds, a reduction of approximately 54.6% compared to the maximum lag

87

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

0 25 50 75 100 125 150 175 200
Time [seconds]

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

M
es

sa
ge

 T
hr

ou
gh

pu
t /

 se
co

nd

Priority Events (Dyconits Disabled)
Priority Events (Dyconits Enabled)
Normal Events (Dyconits Disabled)
Normal Events (Dyconits Enabled)

Figure 6.3: Comparison of average message throughput over time for priority and normal
events, with and without Dyconits enabled.

without Dyconits. The mean consumer lag for normal events with Dyconits enabled is

0.6118 seconds, a difference of around 67.9% compared to the mean lag without Dyconits.

These statistics underline Dyconits’ effectiveness in dynamically adjusting consistency lev-

els based on event priorities, thereby optimizing system performance and reducing syn-

chronisation overhead.

Overall, Figure 6.2 demonstrates that Dyconits plays a pivotal role in restricting consumer

lag for events of varying priorities under fluctuating workloads. By tailoring consistency

levels to event importance and system conditions, Dyconits enhances event delivery effi-

ciency and accuracy, contributing to an improved user experience and system performance.

The throughput trends over time for different event priorities and a fluctuating workload

are shown in Figure 6.3, with a comparison between the scenarios with and without Dy-

conits enabled. Throughput is a key performance metric in this evaluation, as it measures

the number of events processed per second. The figure shows that the average throughput

that can be achieved is influenced by the number of produced events. Moreover, when

the consumer reaches the saturation point, the differences between the system with and

without dyconits are the largest, as indicated by the highlighted sections. This is likely

because the system with dyconits has to synchronise more frequently at this point as it

receives more messages, which in turn affect the numerical value and staleness.

The figure reveals a significant difference, with the highest throughput being about 46.26%

88

6.7 Experiment Results

more in the scenario without Dyconits for priority events than in the scenario with Dy-

conits enabled. Likewise, the average throughput is roughly 12.06% more when Dyconits

are disabled.

Moving on to the normal event scenario, here, the highest throughput in the scenario

without Dyconits enabled is around 46.49% higher than in the scenario with Dyconits en-

abled. The average throughput is also about 10.80% higher when Dyconits are disabled.

The graph illustrates a consistent trend of higher mean throughputs for both priority

and normal events in scenarios where Dyconits are disabled. It is clear that Dyconits incur

extra overhead due to the synchronisation between consumers, leading to lower processing

capabilities for normal events. This trade-off between performance and consistency sug-

gests that while enabling Dyconits improves uniformity, it also reduces the overall system

performance.

6.7.2 Performance Analysis of Hestia Across Star and multi-hop Topolo-
gies

MF4 Hestia is applicable to two common topologies that share the same basic building

blocks as other topologies, such as tree, mesh, or ring. Thus, our results can be

generalized to other scenarios that involve different communication patterns between

services.

MF5 Hestia achieves a significant reduction of consumer lag in multi-hop topologies, low-

ering the average consumer lag of this configuration by a factor of 40.

Figure 6.4 depicts variations in maximum consumer delay across four configurations, high-

lighting topology and Dyconits activation effects. A comparison between star and multi-

hop topologies is made. The impact of enabling or disabling Dyconits within these setups

is also explored.

In the star topology, disabling Dyconits leads to a maximum delay of around 7.3 sec-

onds (avg. 2.1 sec). Enabling Dyconits reduces maximum delay to 2.2 seconds (avg. 0.5

sec). This reveals a 68.98% increase in max delay and 76.0% increase in avg delay with

Dyconits disabled. In the multi-hop topology without Dyconits, max delay surges to 77.1

seconds (avg. 41.2 sec). Enabling Dyconits cuts max delay to 4.4 seconds (avg. 0.9 sec),

improving max delay by 1620.96% and avg delay by 4157.14%.

89

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

50 60 70 80 90 100 110 120 130 140 150
Events Consumed

0

10

20

30

40

C
on

su
m

er
 L

ag
 (s

)

Star Topology - Dyconits Disabled
Star Topology - Dyconits Enabled
Multi-hop Topology - Dyconits Disabled
Multi-hop Topology - Dyconits Enabled

Figure 6.4: Maximum consumer lag for star and multi-hop topologies with and without
Dyconits.

Notably, in the multi-hop setup without Dyconits, a substantial inconsistency arises. After

50 messages, this configuration lags about 20 seconds behind due to inter-service dependen-

cies. Dyconits mitigates this by providing fresher data from faster services, ameliorating

the problem. Comparing multi-hop with Dyconits to star with Dyconits, the former ex-

hibits slightly more inconsistency, attributable to multi-hop’s reliance on other services.

This emphasizes the need for tailored bounds and policies for different topologies.

Figure 6.4 validates the effectiveness of our prototype for using Dyconits in event-driven

systems. We selected the star and transitive topologies based on our earlier findings in

Chapter 3 which showed that they are the basic building blocks for other topologies. There-

fore, our results can be generalized to other scenarios that involve different communication

patterns between services. However, we also acknowledge that there are challenges and

limitations in applying our prototype to more complex topologies, such as routing, consis-

tency, scalability, and fault tolerance issues. These are some of the open problems that we

90

6.7 Experiment Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Throughput [messages/s]

Priority

Priority

Priority

Priority

Multi-hop Priority

Multi-hop Priority

Normal

Normal

Normal

Normal

Multi-hop Normal

Multi-hop Normal

To
pi

c
Ty

pe

Star - Disabled
Star - Enabled
Multi-hop - Disabled
Multi-hop - Enabled

Figure 6.5: Average message throughput for star and multi-hop topologies with and without
Dyconits.

plan to address in our future work.

Figure 6.5 shows the average throughput of messages per second for all configurations used

in this experiment. We distinguish the messages sent from the consumer/producer service

(intermediary) to the consumer in the multi-hop topology as the ‘multi-hop’ topics. These

messages are different from the priority or normal events, and combining them would skew

the results. The figure shows that our results from Section 6.7.1 do not apply to the

multi-hop topology. Previously, we concluded that the throughput of messages is higher

without Dyconits because of no overhead from synchronisation messages. However, this

is not true for the multi-hop topology. The intermediary, which consumes and produces

events, is a bottleneck for the messages that reach the end consumer via the multi-hop

topics. The throughput here is low, while once the messages reach the end consumer, the

throughput is much higher than with Dyconits. At the end consumer, the argument of the

previous experiment applies. There is no communication afterwards, so the throughput

can simply continue. For the multi-hop configuration with Dyconits, the intermediary is

not the bottleneck. This also explains the drastic differences in results of Figure 6.4. By

frequently synchronising with the other service that also acts as an intermediary, it does

not lag and also prevents the other service from lagging afterwards.

For the star topology, we observe that disabling Dyconits leads to higher throughput than

91

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

enabling Dyconits, regardless of the priority level of the events. This is consistent with our

previous findings in Section 6.7.1 that Dyconits introduce some overhead in processing syn-

chronisation messages. Comparing the star topology with Dyconits disabled and priority

enabled to those with Dyconits enabled and priority enabled, the former exhibits approxi-

mately 30% higher max throughput and around 12% higher mean throughput. Likewise,

when comparing Dyconits disabled with normal priority to Dyconits enabled with normal

priority, the former demonstrates roughly 23% higher max throughput and a slight 1.6%

higher mean throughput.

For the multi-hop topology, the results are more nuanced. For priority events, enabling

Dyconits resulted in about a 10% decrease in max throughput and a 14% increase in mean

throughput. This suggests that Dyconits have a trade-off between achieving higher con-

sistency and lower latency at the cost of some throughput reduction. For normal events,

however, Dyconits led to around an 11% higher max throughput and almost 19% higher

mean throughput. This indicates that Dyconits can improve both consistency and through-

put for normal events, which are less time-sensitive and more tolerant of latency variations.

If we compare the multi-hop topology with the star topology, we see a significant dif-

ference, especially in the gain the system makes when it uses Dyconits. For the star

topology, there is a trade-off between consistency and better throughput, but that does

not seem to be the case for the multi-hop topology in terms of throughput. This means

that the multi-hop topology can achieve both high consistency and high throughput by

using Dyconits, while the star topology has to sacrifice one for the other. This suggests

that the multi-hop topology is more suitable for applications that require both properties.

However, the multi-hop topology also has some drawbacks, such as higher network latency

and more complex service dependencies. Therefore, the choice of topology depends on the

specific requirements and characteristics of the application.

The overhead distribution for the different configurations is shown in Figure 6.6. This

figure excludes the configurations without Dyconits, as they do not rely on Dyconits for

synchronisation. The star topology has a lower average overhead than the multi-hop topol-

ogy, with a reduction of about 16.74% for priority events and 20.38% for normal events.

However, the star topology also has a higher maximum overhead, with an increase of

38.46% for priority events and 16.67% for normal events compared to the multi-hop topol-

ogy. These differences indicate the performance variation between the two topologies, and

92

6.7 Experiment Results

0 10 20 30 40
Throughput [Dyconit Messages/s]

Priority

Priority

Multi-hop

Normal

Normal

Multi-hop

To
pi

c
Ty

pe

Star Topology
Multi-hop Topology

Figure 6.6: Average overhead for star and multi-hop topologies with Dyconits.

suggest that the star topology may offer some benefits in terms of overhead reduction.

One possible reason for this is that the star topology has fewer hops between the event

source and destination, which reduces the latency and the bandwidth usage. Moreover,

we observe that the overhead for the multi-hop topology has a wide range, especially for

priority events. This could be related to the workload used for this configuration, which

has a variable behaviour that may affect the priority bounds adjustment. We also confirm

the same finding as in Experiment 6.7.1, where the priority events had a higher overhead,

as they require stronger consistency guarantees.

Another interesting observation is the low overhead for the multi-hop events. This could

be attributed to the fact that the intermediate service that is usually behind often syn-

chronises, which makes the messages arrive at roughly the same time at all services, and

reduces the need for synchronisation at the final consumer. However, this also means that

the multi-hop events have a lower freshness than the priority events, as they may be de-

layed by the intermediate service. This trade-off between overhead and freshness is an

important factor to consider when choosing a configuration for Dyconits.

93

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

0 1 2 3 4 5 6
Consumer Lag [seconds]

Undersaturated Workload

Fluctuating Workload

Oversaturated Workload

Po
lic

y

Priority
Normal

Figure 6.7: Distribution of consumer lag for priority and normal events under different
workload situations.

6.7.3 Performance Analysis of Hestia Under Varied Workload

MF6 Hestia adapts to the workload saturation by balancing performance and consistency.

It boosts performance within limits when the workload is oversaturated, and enhances

consistency at the cost of performance when the workload is undersaturated. For

instance, Hestia reduces the peak priority consumer lag by 25% compared to the

normal events in an oversaturated load.

MF7 Hestia shows its flexibility and resilience by adjusting to different types of workloads,

from simple to complex, and from homogeneous to heterogeneous. This illustrates

the generality of our design and implementation.

Figure 6.7 shows the distribution of the consumer lag when handling priority and normal

events in different workload situations. We observe that consumer lag is directly affected

by different workloads. The lowest consumer lag occurs at the undersaturated load, with

an average of 0.33 seconds for priority events and 0.30 seconds for normal events. This

suggests that the consumers can handle the flow of events efficiently, without much diver-

gence. The fluctuating workload results in higher mean values of 0.50 seconds for priority

events and 0.60 seconds for normal events. This increase is because the system sometimes

reaches its capacity, but then the flow of events also decreases. The highest consumer

94

6.7 Experiment Results

0.0 0.5 1.0 1.5 2.0 2.5
Throughput [Messages/s]

Undersaturated Workload Priority

Fluctuating Workload Priority

Oversaturated Workload Priority

Undersaturated Workload Normal

Fluctuating Workload Normal

Oversaturated Workload Normal

Figure 6.8: The average message throughput for priority events and normal events over time
for three workloads: undersaturated, fluctuating, and oversaturated.

lag is found for the oversaturated workload, with a mean of 1 second for both priority

and normal events. This indicates that Hestia can balance performance and consistency

depending on the flow of events: it prioritises performance when the workload is high, and

consistency when the workload is low. Moreover, we notice another significant difference

in the consumer lag between priority events and normal events. In all cases, the distri-

bution of consumer lag is wider for normal events. This implies that normal events have

less strict consistency requirements. This demonstrates that Hestia can distinguish which

events should be prioritised.

Figure 6.8 shows the message throughput per second for the different workloads tested on

our prototype. First, we examine the undersaturated workload, which has a very stable

throughput, with a mean of around 1. This workload produces and sends a steady stream

of events to the broker. The events are processed quickly at the broker, since the rate

is set to avoid overwhelming the consumer. However, sometimes the consumer polls the

broker when there are no events, which lowers the throughput. Therefore, this workload

does not achieve the best throughput, but demonstrates how the prototype operates under

95

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

normal circumstances. Next, we look at the fluctuating workload, which has the most

variable throughput, ranging from 0.5 to 2.0. This reflects the nature of the workload,

which alternates between high and low demand for events. This workload has the lowest

throughput because it causes frequent changes in the broker’s buffer size, which affects the

system performance. Moreover, when the demand is high, the consumer may not be able

to keep up with the event rate, leading to longer queues and delays at the broker. On

the other hand, when the demand is low, there are no events to consume, which reduces

the message throughput drastically. Therefore, both the low and high demand phases of

the fluctuating workload contribute to its low throughput. Finally, we consider the over-

saturated workload, which has the highest throughput, reaching up to 2.0. This shows

the maximum performance of the prototype when it is constantly processing events. This

corresponds to how Dyconits is designed: we adjust the consistency bounds based on the

message throughput. When the message throughput is high, the policy increases the con-

sistency bounds. As a result, we temporarily have a lower level of consistency, but more

events can be processed, so the broker is not overwhelmed. This is also why normal events

have a slightly higher throughput in all workloads compared to priority events. The con-

sistency bounds for normal events have less strict consistency requirements, allowing them

to be more inconsistent, as shown in Figure 6.7. The trade-off is that these events have a

higher throughput and therefore better performance.

Figure 6.9 shows the dyconit messages per second. These are the messages that consumers

send to each other with data when they need to synchronise their states. This figure

reveals a striking correlation with the results of Figure 6.7 and Figure 6.8. Namely, we

see that the dyconit related throughput for the undersaturated workload is the highest.

This supports the claim that dyconits offer stronger consistency when the rate of events

coming in is low. The consistency bounds can be smaller without losing much in terms

of performance. Conversely, we see that in the oversaturated workload, the throughput

on dyconit messages is lowest. This indicates that when the inflow of events is high, the

consistency bounds will scale more. Additionally, we see that there is a clear difference

between how we handle priority events and normal events. Thus, we see that even with

an oversaturated workload, the system does its best to keep the priority events better in

sync, something that is also evident in Figure 6.7.

96

6.7 Experiment Results

0 10 20 30 40
Throughput [Dyconit Messages/s]

Undersaturated Workload Priority

Fluctuating Workload Priority

Oversaturated Workload Priority

Undersaturated Workload Normal

Fluctuating Workload Normal

Oversaturated Workload Normal

Figure 6.9: The average number of messages exchanged between consumers to synchronise
their states over time for priority events and normal events under three workloads: undersat-
urated, fluctuating, and oversaturated.

6.7.4 Performance Analysis of Hestia Under Varied Policies

MF8 The choice of policy affects Hestia’s behaviour significantly, as different policies entail

a trade-off between performance and consistency. For example, the Exponential

Smoothing Policy can achieve an 81.25% reduction in overhead by allowing a 120%

increase in consumer lag.

MF9 Hestia is a flexible and customizable system that can adapt to different applications

and user preferences. It offers a variety of policies that can be configured according

to the specific requirements and objectives of each scenario.

Figure 6.10 presents a comprehensive view of the consumer lag distribution during the

processing of priority and normal events. These events are subjected to distinct policies

within the context of an oversaturated workload. We find noteworthy insights into the

97

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

0 2 4 6 8 10 12 14 16
Consumer Lag [seconds]

No Policy

Simple Policy

Moving Average Policy

Exponential Smoothing Policy

Po
lic

y

Priority
Normal

Figure 6.10: Distribution of consumer lag for priority and normal events with different
policies using the oversaturated workload.

effectiveness of each policy.

Remarkably, the No Policy approach emerges as the frontrunner in terms of consumer

lag performance for both priority and normal events, exhibiting mean values of 0.63 sec-

onds and 0.76 seconds, respectively. This outcome aligns with expectations, given that the

absence of a policy preserves the initially stringent bounds. These bounds, being deliber-

ately conservative, contribute to the observed efficiency.

In contrast, the Simple and Moving Average Policies exhibit similar trends, but the latter

showcases superior prioritization of priority events. The Simple policy has a 3.9% higher

mean consumer lag for priority events than for normal events, but the normal events have

a larger standard deviation of consumer lag. Similarly, the Moving Average policy yields

mean consumer lags of 0.85 and 1.15 seconds for priority and normal events, respectively.

This indicates the Moving Average policy’s efficacy in prioritizing priority events within

an oversaturated workload, potentially attributable to its more advanced nature.

However, the Exponential Smoothing Policy’s results warrant scrutiny. This policy yields

a mean consumer lag of 1.39 seconds for priority events and 2.5 seconds for normal events.

This divergence in consumer lag indicates the policy’s inclination towards managing over-

98

6.7 Experiment Results

0 25 50 75 100 125 150 175 200
Time [seconds]

0.5

1.0

1.5

2.0

Av
er

ag
e

M
es

sa
ge

 T
hr

ou
gh

pu
t /

 se
co

nd

1.191.19 1.19 1.19

1.20
Normal Events
Priority Events
Throughput Threshold
No policy
Simple policy
Moving Average Policy
Exponential smoothing policy

Figure 6.11: Message throughput of various policies under an oversaturated workload, high-
lighting the significance of threshold choice on system performance and consistency.

saturation by substantially expanding the bounds. As a result, this shift towards larger

bounds also translates to extended and less predictable consumer lag following each syn-

chronisation event.

In summary, the analysis underscores that the No Policy approach capitalizes on conserva-

tive bounds to maintain the lowest consumer lag across both priority and normal events.

Conversely, the Exponential Smoothing Policy’s trade-off between expanded bounds and

increased consumer lag illustrates the complexity of optimizing performance in oversatu-

rated workloads.

In Figure 6.11 we analyse the message throughput of different policies under the oversat-

urated workload. there are no large differences between the policies in terms of message

throughput. However, a notable observation is that the throughput often exceeds the

threshold of 1.20 messages per second for all the policies. This indicates that the bounds

are increased more frequently for all the policies to handle the over saturation of the work-

load. This is consistent with the nature of the workload, which pushes the system to the

limit. Another interesting observation is that in some cases, the throughput is slightly

below the threshold of 1.20 messages per second. In these cases, the bounds will decrease.

This indicates that the choice of the threshold can have a significant impact on the con-

sistency and performance of the system. We further analyse this in Experiment 6.6.5.

Figure 6.12 provides an explanation for the results in the previous graphs. First, we see

that for all policies, there is more overhead for the priority events compared to the normal

99

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

0 10 20 30 40
Overhead [Dyconit messages/s]

No Policy Priority

Simple Policy Priority

Moving Average Policy Priority

Exponential Smoothing Policy Priority

No Policy Normal

Simple Policy Normal

Moving Average Policy Normal

Exponential Smoothing Policy Normal

Figure 6.12: Overhead comparison of different policies for priority versus normal events.

events. This is an expected result, as we have indicated that these events are more impor-

tant and need a higher degree of consistency. However, we see that we have by far the most

overhead when we do not use a policy. As indicated earlier, the initial bounds are quite

strict, so a lot of synchronisation is needed. On the one hand, this makes for a very consis-

tent system; on the other hand, you do sacrifice some performance in return. Furthermore,

we can see from this figure that the more specialized the policy is, the more impact it

has on the performance. For example, the exponential smoothing policy is configured to

increase the bounds to provide more events. Therefore, it requires less communication

between services. In contrast, a simpler policy like simple policy still loses quite a lot of

performance. Ultimately, the choice of policy depends on the software engineer’s preference

for performance or consistency, as well as their ability to develop their own policies. This

is why it is important for software engineers to also have the freedom to create their own

policies.

100

6.7 Experiment Results

0.900.910.920.930.940.950.96
Average Throughput [messages/second]

0.0

0.5

1.0

1.5

2.0

2.5

In
co

ns
is

te
nc

y
[s

ec
on

ds
]

1
4

2

9

15

All Data Points
Pareto Front

Figure 6.13: Pareto front representation for priority events under a fluctuating workload.
The axes depict maximum inconsistency lag and average event throughput The Pareto front vi-
sualizes the optimal trade-offs between these objectives, highlighting settings that offer the best
balance between minimizing inconsistency and overhead while maximizing message through-
put.

6.7.5 Sensitivity Analysis of Varied Dependent Policy Parameters

MF10 Factors such as initial bounds, policy rules, and thresholds affect the system’s perfor-

mance in terms of consistency, overhead, and throughput. For example, the configu-

ration that gives priority events the most flexibility shows a 70% higher inconsistency

rate than the configuration that ensures high consistency, but it also reduces the over-

head by about 60% compared to the configuration that imposes the most strictness.

MF11 The best system configuration varies depending on the specific scenario and the

objectives and preferences of the software engineer. There is no universal solution;

rather, there is a set of optimal trade-offs for different situations, which can be

represented by a Pareto frontier. Generally speaking, we observe that tight bounds

offer a balance of weak consistency and high performance, while loose bounds ensure

strong consistency but lower performance.

Figure 6.13 shows a Pareto front for priority events in a fluctuating workload. The two

axes represent the maximum inconsistency lag (how far a service lags behind another ser-

101

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.8: Optimal settings for priority events under fluctuating workloads. The table details
the most efficient configurations, showcasing their corresponding maximum inconsistency lag,
event and overhead throughputs, as well as the thresholds and rules employed for each setting.

Policy ID Lag (ms) Message Throughput Overhead throughput Threshold Rules

2 613 0.909759 14.796 1.0 +1,−.5
4 667 0.919751 14.312 1.4 +1,−.5
11 786 0.934547 8.467 1.2 +4,−2
9 860 0.934584 7.412 0.8 +4,−2
12 1020 0.942914 10.193 1.4 +4,−2
15 1893 0.943043 6.068 1.2 +8,−4

vice) and the average event throughput (how many events the consumer can process per

second). A Pareto front is a graphical representation of the optimal trade-offs between

multiple objectives in a decision-making problem. It shows the set of solutions that are

Pareto efficient, meaning that no other solution can improve one objective without wors-

ening another. Our goal was to minimise the inconsistency, while maximising the message

throughput. Table 6.8 lists the most optimal settings along with their corresponding lag

and throughput values, as well as the threshold and the rules used for each setting. The

threshold number is based on throughput, and the rules are the actions taken when the

throughput exceeds or falls below the threshold. For example, setting 2 has a threshold

of 1.0 and rules of +1,−.5, which means that if the throughput exceeds 1.0, the consumer

will increase both the staleness bound (the maximum allowed difference between two ser-

vices) and the numerical error (the maximum allowed deviation from the exact value) by

1 second, and if it is lower than 1.0, it will decrease them by 0.5 seconds.

We can use both the table and the figure to determine what configuration is optimal for

an event-driven system that uses priority events. We see that there is a trade-off between

low inconsistency and low message throughput on one hand, and high overhead on the

other hand. This is consistent with previous experiments that we conducted. However, on

the opposite side of the Pareto front, we see that the highest inconsistency also yields the

highest message throughput and the lowest overhead throughput. Therefore, this experi-

ment shows that using very conservative rules for the policies yields very strict consistency

results. This is because the initial boundaries were already quite strict, so changing them

slightly when the throughput varies does not affect them much. As a result, when using

rules that adjust their bounds more significantly, we see that we are on the other side of our

Pareto front. Those bounds have a higher impact in changing the initial strict bounds. We

102

6.7 Experiment Results

0.900.910.920.930.940.950.96
Average Throughput [messages/second]

0.0

0.5

1.0

1.5

2.0

2.5

In
co

ns
is

te
nc

y
[s

ec
on

ds
]

24
11
9

12

15

All Data Points
Pareto Front

Figure 6.14: Pareto front representation for normal events under a fluctuating workload.
The axes depict maximum inconsistency lag, and average message throughput. The Pareto
front visualizes the optimal trade-offs between these objectives, highlighting settings that offer
the best balance between minimizing inconsistency and overhead while maximizing message
throughput.

see that generally this results in weaker consistency regardless of the throughput threshold.

This means that throughput has been above the threshold more often than below it, which

increased bounds but kept them within limits.

One conclusion that can be drawn from these results is that the optimal configuration

for an event-driven system that uses priority events depends on the trade-off between con-

sistency and performance. If the system requires strict consistency, then it should use

conservative rules that keep the bounds tight and accept the cost of high overhead. If the

system can tolerate some inconsistency, then it should use aggressive rules that loosen the

bounds and benefit from high message throughput and low overhead. The Pareto front

provides a visual guide to choose the best configuration based on the desired objectives.

Figure 6.14 shows the Pareto front for normal events in a fluctuating workload. Our goal

is the same as for the priority events: minimise inconsistency and overhead while achieving

maximum throughput. The most optimal configurations and their corresponding values

are shown in Table 6.9. The results reveal that the normal events have a lower priority in

103

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

Table 6.9: Optimal settings for normal events under fluctuating workloads. The table details
the most efficient configurations, showcasing their corresponding maximum inconsistency lag,
event and overhead throughputs, as well as the thresholds and rules employed for each setting.

Policy ID Lag (ms) Message Throughput Overhead throughput Threshold Rules

1 596 0.904526 8.375 0.8 +1,−.5
4 663 0.919813 8.343 1.4 +1,−.5
10 856 0.938366 6.000 1.0 +4,−2
12 1140 0.941297 5.134 1.4 +4,−2
9 1530 0.952880 4.838 0.8 +4,−2
15 1883 0.959662 4.210 1.2 +8,−4

synchronising with other services than the priority events, as they have a significantly lower

overhead with similar lag and message throughput. This implies that the normal events

can tolerate more inconsistency for longer periods of time. Another observation is that the

same conclusion that we drew for the priority events also holds for the normal events: the

conservative rules generally provide the strongest consistency, while the aggregate bounds

offer the highest throughput and the lowest overhead at the expense of consistency.

The conclusion that we can draw from the results is that the performance of the system

depends on the initial bounds, the policy rules, and the threshold, as well as the type

and priority of the events. The initial bounds determine the range of possible values for

consistency, overhead, and throughput. The policy rules and the threshold control how

the system adapts to the fluctuating workload and how it balances the trade-offs between

the three metrics. The type and priority of the events affect how much inconsistency and

overhead the system can tolerate and how much throughput it can achieve.

To summarise, we can say that there is no one-size-fits-all solution for the system configu-

ration, but rather a Pareto front that shows the optimal trade-offs for different scenarios.

Software Engineers should carefully choose the initial bounds, the policy rules, and the

threshold according to their specific needs and preferences. They should also consider the

characteristics and priorities of the events that they expect to handle in their system. By

doing so, they can optimise the performance of their system and achieve their desired goals.

6.8 Discussion

Due to the challenges setting up a realistic environment with multiple nodes and scaled

workloads, we did not test our system on a real setup. However, we believe that our results

104

6.8 Discussion

are indicative of the potential benefits of Dyconits in such scenarios. Based on existing

benchmarks, we expect that Kafka would exhibit similar performance characteristics as in

our experiments, but with higher latency and lower throughput due to network overhead

and contention (43). We also assume that Hestia would be able to adapt to the changing

conditions and maintain the desired consistency levels for different event priorities. How-

ever, we acknowledge that these are speculative claims and that there might be unforeseen

factors or challenges that could affect the behaviour and performance of our system in a

real setup. Therefore, we plan to conduct further experiments on a real setup in the future

to validate our findings and address any limitations or issues that might arise.

105

6. EVALUATION OF THE PERFORMANCE OF A GENERIC
DYCONIT SYSTEM: EXPERIMENTAL DESIGN AND RESULTS

106

7

Conclusion and Future Work

This chapter summarizes the contributions of this thesis and looks forward to future lines

of research emerging from it.

7.1 Conclusion

In this work, our goal was to extend Dyconits to general event-driven systems. To achieve

this, we have formulated four main research questions that guide our investigation, as

presented in Chapter 1. We have also reviewed the relevant literature on Dyconits and

related topics in Chapter 2. In Chapters 3 to 6, we have described our contributions in

terms of requirements analysis, design, implementation, and evaluation of our proposed

approach. In this section, we revisit our research questions and provide answers based on

our findings.

(RQ1) State-of-the-art: What are the common requirements in event-driven sys-

tems that can inform the design of a generic Dyconit system?

we present a universal topology for event-driven architectures that can support vari-

ous communication patterns and application contexts. We then evaluate the benefits

and drawbacks of each communication pattern and application context, and exam-

ine how well our universal topology addresses the diverse demands and challenges of

event-driven architectures. Moreover, we illustrate its generality by applying it to

three different applications that involve synchronizing replicated data in the presence

of service latency. These applications are smart farming, chat application, and real-

time analysis. This allows us to identify their specific non-functional requirements.

107

7. CONCLUSION AND FUTURE WORK

(RQ2) Design of the system: How to design a generic Dyconit system for event-

driven systems?

Our requirement analysis of event-driven systems led us to synthesize the essential

functional and non-functional requirements for a generic Dyconit system. The Dy-

conit system design for event-driven architectures has three main components: the

Dyconit Overlord, the Dyconit Admin, and the Dyconit Agents. These components

are responsible for managing the dyconits and their consistency policies. Our design

for the generic Dyconit consistency model belongs to the application-oriented per-

spective, under the dynamic/optimistic subcategory. This implies that the system

can provide different consistency levels for different dyconits based on their impor-

tance and relevance.

(RQ3) Implementation of the system: How to integrate a generic Dyconit system

into event-driven systems?

We present a working prototype of the generic dyconit system, called Hestia, that

fulfils the design’s functional and non-functional requirements. We use the Con-

fluent.Kafka library for .NET, which provides a rich set of APIs and abstractions

for interacting with Apache Kafka. This library enables us to create and configure

producers and consumers, as well as applications that can perform both roles. More-

over, we develop custom components to handle the creation, update, and deletion of

dyconits.

(RQ4) Evaluation of the system: How to evaluate a generic dyconit system for

event-driven system?

We present Hestia, a prototype for optimistic inconsistency in event-driven systems,

based on the dyconit consistency model. We evaluate Hestia with synthetic work-

loads, two common topologies, and different policies, and compare it with a baseline

system. Hestia reduces inconsistency by 70% for both priority levels, while decreas-

ing the throughput by 45%. Hestia adapts to the workload saturation by balancing

performance and consistency. Hestia is flexible and customizable to different appli-

cations and user preferences. Hestia can also prioritize certain events according to

the application’s needs. We conclude that Hestia offers a useful trade-off between

inconsistency, throughput, and overhead, and that software engineers can tailor them

to their specific requirements. In short, Hestia can significantly reduce inconsistency,

but with some overhead and lower throughput.

108

7.2 Future Work

7.2 Future Work

Our prototype leverages the idea of application-centric consistency to enable services

to retrieve more recent data from faster services at similar positions in the topology.

Application-centric consistency allows applications to specify their own consistency policies

and preferences, rather than relying on the default or a one-size-fits-all approach of the

underlying system. This gives more flexibility and control to the application developers

and users, and enables them to optimize their data access and processing according to their

specific needs and scenarios.

In our prototype, we use staleness and numerical error bounds as the parameters for bound-

ing inconsistency. By using these parameters, services can express their tolerance for data

freshness, and request data from other services that can satisfy their requirements. We

implement this idea in our prototype system, Hestia, which is a middleware layer that sup-

ports application-centric consistency for event-driven systems. Dyconits enables services

to retrieve more recent data from faster services at similar positions in the topology.

Our work demonstrates the potential for improving the quality attributes of event-driven

systems, especially in dynamic and heterogeneous environments. We envision event-driven

systems that can handle large-scale and complex data streams with high efficiency and

accuracy. We aim to advance this exciting and important field of research. We invite other

researchers and practitioners to explore new ways of using Dyconits and application-centric

consistency in event-driven systems. As future work, we suggest 4 directions, building on

the contributions of this thesis:

1. We propose that application-centric consistency models are a promising direction for

future research in event-driven systems. We demonstrate this by presenting Hes-

tia, our prototype system that allows fine-grained control over the consistency level

of different types of events. We argue that this approach is more suitable for event-

driven systems than traditional consistency models, as it can better accommodate the

diverse and dynamic nature of events. Therefore, we encourage the research commu-

nity to explore further the potential and challenges of application-centric consistency

models.

2. Other work can deepen and engineer Hestia to be fit for deployment in a production

context. Hestia can be optimized to reduce the overhead of managing dyconits,

109

7. CONCLUSION AND FUTURE WORK

such as minimizing the communication cost between the overlord and the admins,

and handling failures and recovery. Additionally, we challenge the community to

look further into what other implementations work for a dyconit system in event-

driven systems. Earlier versions of the design we have shown that there is promising

potential developing a system that not only looks at the consumers, but also considers

the whole system. Namely, the producers, broker, and consumer. One possible idea

is to leverage the information available at the broker level. For example, in Kafka, the

API provides information about how far behind the consumer is from the producer.

This information can be used to adjust the rate of event production and consumption

dynamically, depending on the consumer’s load and availability. This way, the system

can balance the trade-off between consistency and performance by adapting to the

changing conditions of the event-driven system.

3. We challenge the community to implement and evaluate Hestia in a large-scale dis-

tributed setting, and to investigate how to optimize the consistency level for each

event type, how to evaluate the trade-offs between consistency and performance.

Our experiments on Hestia have the limitation that they are executed on a single

machine docker swarm setup. This gave us the advantages of a controlled envi-

ronment, simplicity in configuration, and quick iteration times, but also presented

disadvantages such as limited scalability, non-representation of real-world network

latencies, and the inability to assess inter-service communication challenges. There-

fore, a comprehensive evaluation in a more complex and distributed infrastructure

would offer invaluable insights into Hestia’s capabilities and areas for improvement.

4. Expanding on future advancements in the dyconit consistency model, we suggest har-

nessing the capabilities of Machine Learning and Artificial Intelligence for defining

consistency bounds and formulating policies. These technologies offer enhanced po-

tential to navigate the vast design space associated with these parameters. Although

the task will likely continue to be human-centric, leveraging an AI tool can signifi-

cantly alleviate the burden on practitioners. Multi-objective optimization algorithms,

prevalent in both traditional Artificial Intelligence and contemporary Machine Learn-

ing methodologies, warrant specific evaluation for this challenge. Conducting a user

study that contrasts selected methodologies with our proposed ones would offer a

robust measure of their effectiveness.

110

8

Appendix

8.1 Email Questions to Industry Experts

111

E-mail

I am currently working on my thesis around the area of consistency. I am currently working on
developing a generic consistency model that provides "optimistic consistency". My approach to
realising this consistency model is to implement it as a wrapper on Kafka.

I would like to test my implementation soon by using different "real-world" patterns of events added
to Kafka. Through CONTACT, I understand that you have experience with Kafka at COMPANY.
Therefore, I'm curious if you can share with me what different workloads you see coming in.

Specifically, I'm interested in the following details:
Q1: The average number of events you process per second/minute
Q2: The pattern of these events. For example, are there peak moments at certain times?
Q3: The average size of these events (in kilobytes or megabytes)
Q4: Is there a difference in the importance of events, e.g. between logging events and other types of
events?

By understanding the workload of 'real-world applications', I can better tune and optimise my
system.

Thanks in advance for your time and effort.

Respondent 1

The first respondent is the manager of DataRotonde. DataRotonde is a service that helps housing
corporations manage IT incidents and coordinate with external vendors to resolve issues in their
application connections, ensuring faster and proactive problem-solving.

A1:
“Looking at the last six hours, across all tenants, it averaged 1,834 / minute or 30.5 / second. The
busiest minute was at 4,457 / minute. This is what we get in terms of production messages on the
various engine instances. Logging events are not part of this. Logging (run via RabbitMQ) averaged
24,062 / minute or 401 / second over the same period.”

A2:
“Yes, traffic is fairly dependent on working hours at connected parties. In addition, data changes can
cause extensive data synchronisations that generate many events. The traffic is so diverse that no
more specific patterns can be found in it, which varies by connected process and organisation.”

A3:
“The average size over the same period is 2938 bytes. But the size of the events follows a lognormal
distribution with a very long tail. The median is 101 bytes on average.”

A4:
“Not really, logging events are needed for the audit trails and we also want to keep them as
complete as possible. Should the need arise, we could differentiate between dropping certain types
of events. DataRotonde is not currently set up for that.”

Respondent 2

The second respondent is a consultant working for a company in the transport sector.

A1:
The average number of events processed per second/minute is 300 during peak moments, which
occur during the morning and late afternoon rush hours in the transport sector.

A2:
The workload exhibits peaks between 06:00 - 09:00 and between 15:00 - 18:00, corresponding to the
rush hour periods. These are the times when the highest number of events are generated and need
to be processed.

A3:
The average size of events in the transport sector is 20 kilobytes (KB), with some large outliers. Over
the course of the last month, there were 73.7 million rows of data, amounting to a total of 382.5
gigabytes (GB) of data.

A4:
 In the transport sector, all events are considered equally important. There is no differentiation in
terms of event importance, as every event holds significance for the operations and management of
the transport systems.

Respondent 3
The third respondent is a consultant working in the energy sector.

A1:
“Unfortunately, the specific average number of events processed per second/minute is not provided
by the third respondent in the energy sector.”

A2:
“The workload in the energy sector experiences peak moments. However, the exact timing or
frequency of these peak moments is not mentioned, so further details regarding the specific patterns
are not available.”

A3:
“The events in the energy sector tend to have large sizes. In order to handle these large events
effectively, they are divided into thousands of smaller events. Additionally, the third respondent
mentions that large events are relatively rare, implying that the majority of events are smaller in
size.”

A4:
“In the energy sector, separate topics are utilized for different priority events. This suggests that
there is a distinction made between various types of events based on their importance or priority.
The system is designed to handle different types of events and prioritize them accordingly using
separate topics.”

Respondent 4

The fourth respondent is a software engineer working at a retail e-commerce company.

A1:
“On average, we process around 50 events per second and approximately 3000 events per minute.”

A2:
“Our workload exhibits distinct patterns throughout the day. We observe peak moments during
weekdays between 10:00 AM and 2:00 PM, coinciding with high customer activity and order
placements. We also experience increased traffic during promotional campaigns and holiday
seasons.”

A3:
“The average size of our events varies depending on the nature of the data being processed. Order-
related events, which include customer information and purchased items, range from 10 to 50
kilobytes (KB). Inventory update events, such as stock level changes, are smaller, averaging around 1
kilobyte. However, media-related events, such as product images or videos, can be larger, ranging
from a few hundred kilobytes to several megabytes.”

A4:
“In our system, there is a difference in the importance of events. Order-related events are
considered crucial for order processing and fulfillment, as they directly impact customer satisfaction.
Inventory update events are also important to ensure accurate stock information. However, generic
system logs or internal monitoring events have a lower priority in terms of processing and storage, as
they don't directly impact customer experience or business operations.”

Respondent 5
The fifth respondent is a consultant working at a financial institution.

A1:
“Our event processing rate is relatively low due to the high sensitivity and criticality of the data. On
average, we handle around 10 events per second.”

A2:
“Our workload doesn't exhibit significant peaks or specific patterns in terms of volume or timing. The
events are spread out evenly throughout the day incidents can occur at any time.”

A3:
“The size of our events is relatively small, typically ranging from a few hundred bytes to a few
kilobytes. The events primarily consist of logs and alerts.”

A4:
“In our system, all events are considered equally important.”

8.2 Policy Configurations

8.2 Policy Configurations

115

8. APPENDIX

{

"policy": "throughput-threshold-policy",

"collectionNames": ["topic_priority", "topic_normal"],

"thresholds": {

"throughput": 5,

"overhead_throughput": 4

},

"rules": [

{

"policyType": "standard",

"condition": "throughput >= threshold",

"actions": [

{

"type": "multiply",

"value": 0.85

}

]

},

{

"policyType": "standard",

"condition": "throughput < threshold",

"actions": [

{

"type": "multiply",

"value": 1.15

}

]

}

]

}

Listing 2: Simple Policy

116

8.2 Policy Configurations

{

"policy": "moving-average-policy",

"collectionNames": ["topic_priority", "topic_normal"],

"averageSizeThroughput" : 3,

"thresholds": {

"throughput": 5

},

"rules": [

{

"policyType": "standard",

"condition": "avg > threshold",

"actions": [

{

"type": "multiply",

"value": 1.05

}

]

},

{

"policyType": "standard",

"condition": "avg < threshold",

"actions": [

{

"type": "multiply",

"value": 0.95

}

]

}

]

}

Listing 3: Moving Average Policy

117

8. APPENDIX

{

"policy": "expsmoothingPolicy",

"collectionNames": ["topic_priority", "topic_normal"],

"thresholds": {

"throughput": 5

},

"rules": [

{

"policyType": "exponentialSmoothing",

"smoothingFactor": 0.5,

"condition": "throughput > threshold",

"actions": [

{

"type": "multiply",

"value": 1.05

}

]

},

{

"policyType": "exponentialSmoothing",

"smoothingFactor": 0.5,

"condition": "throughput < threshold",

"actions": [

{

"type": "multiply",

"value": 0.95

}

]

}

]

}

Listing 4: Exponential Smoothing Policy

118

8.3 Artifact Appendix

8.3 Artifact Appendix

8.3.1 Abstract

Our artefact provides reproducible and reliable results for all evaluated benchmarks, along

with scripts to use these benchmarks to regenerate the data and plots for the graphs in this

thesis. This allows independent evaluation of our results, as described in the paper. We also

provide source code for all benchmarks and our evaluation pass itself. We further provide

instructions to integration to automatically compile and run Hestia, and generate evalua-

tion graphs. Our artefact is publicly available at a GitHub repository, which can be accessed

through the following link: https://github.com/JurreBrandsen1709/dyconits_kafka.

8.3.2 Artifact check-list (meta-information)

• Algorithm: Dyconits Consistency model

• Program: Hestia: Dyconit consistency for event-driven systems

• Compilation: net7.0

• Run-time environment: Windows 11

• Hardware: We recommend 12th Gen Intel Core i7-12800H and 32 GiB RAM

• Execution: dotnet run

• Metrics: Consumer Lag, Overhead Throughput and Event Throughput

• Output: logging files for each individual consumer

• Experiments: as displayed in Section 6.6

• How much time is needed to complete experiments (approximately)?: 5-10 per
experiment

• Publicly available?: yes (see GitHub page)

• Code licenses (if publicly available)?: MIT

8.3.3 Description

8.3.3.1 How to access

Access our work through the following link: https://github.com/JurreBrandsen1709/

dyconits_kafka.

119

https://github.com/JurreBrandsen1709/dyconits_kafka
https://github.com/JurreBrandsen1709/dyconits_kafka
https://github.com/JurreBrandsen1709/dyconits_kafka

8. APPENDIX

8.3.3.2 Software dependencies

.NET related dependencies:

1. Confluent.Kafka (Version 1.9.3)

Used for working with Apache Kafka and message streaming.

2. Microsoft.Extensions.Configuration (Version 6.0.0)

Manages configuration settings in .NET applications.

3. Microsoft.Extensions.Configuration.Binder (Version 6.0.0)

Binds configuration values to objects.

4. Microsoft.Extensions.Configuration.Ini (Version 6.0.0)

Adds support for reading configuration settings from INI files.

5. Newtonsoft.Json (Version 13.0.3)

A library for working with JSON data.

6. Serilog (Version 3.0.1)

A logging framework for structured and efficient logging.

7. Serilog.Sinks.Console (Version 4.1.0)

Allows logging to the console.

8. Serilog.Sinks.File (Version 5.0.0)

Allows logging to files.

Python related Dependencies:

1. numpy

A fundamental package for numerical computations in Python, providing support for

arrays, matrices, and mathematical functions.

2. scipy

Built on top of NumPy, it provides additional scientific and technical functionality,

including optimization, signal processing, and statistics.

3. matplotlib

A plotting library that enables the creation of various types of graphs and visualiza-

tions in Python.

120

8.3 Artifact Appendix

4. pandas

A versatile data manipulation and analysis library that provides data structures like

DataFrames, enabling efficient data handling and exploration.

5. seaborn

A statistical data visualization library based on Matplotlib, designed to create infor-

mative and attractive visualizations.

8.3.4 Installation

You can pull our prototype from Github:

git pull git@github.com:JurreBrandsen1709/Hestia.git

8.3.5 Experiment workflow

To enable the various experiments, you need to make the following adjustments after

cloning the repository:

1. Modify the producer.csproj file in either the star-topology or trans-topology

folder with the selected workload.

2. Put a policy of your choice in the active folder.

3. Configure the conits in the consumers.

4. run the docker-compose file

8.3.6 Evaluation and expected results

After running the experiment, you need to retrieve the logging files from the docker con-

tainer. These files are located in the /data/ folder and contain the raw data for each

consumer. You should move these files to the /experiment/ folder and name them ac-

cording to the topology, workload and policy used. For example, s_w1_p1_ means star

topology, workload 1 and policy 1.

To extract the relevant data from the raw files, you can use the extract.py script. This

will create .csv files with the data you need and save them in either the star-topology

or trans-topology folders, depending on your setup.

121

8. APPENDIX

8.3.7 Methodology

The artefact for this thesis was reviewed according to the guidelines at http://cTuning.

org/ae/submission-20161020.html.

122

http://cTuning.org/ae/submission-20161020.html
http://cTuning.org/ae/submission-20161020.html

References

[1] Jurre Brandsen, Jesse Donkervliet, and Alexandru Iosup. A Compre-

hensive View Of Consistency in Distributed Systems. 2023. i, 3, 9, 13

[2] Hesam Nejati Sharif Aldin, Hossein Deldari, Mohammad Hossein Moat-

tar, and Mostafa Razavi Ghods. Consistency models in distributed sys-

tems: A survey on definitions, disciplines, challenges and applications.

CoRR, abs/1902.03305, 2019. 1

[3] Susanne Braun, Stefan Deßloch, Eberhard Wolff, Frank Elberzhager,

and Andreas Jedlitschka. Tackling Consistency-related Design Challenges

of Distributed Data-Intensive Systems - An Action Research Study. CoRR,

abs/2108.03758, 2021. 1

[4] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Dis-

tributed Storage Systems. CoRR, abs/1512.00168, 2015. 1, 2, 10

[5] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correct-

ness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, jul 1990. 1

[6] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-

possibility of Distributed Consensus with One Faulty Process. J. ACM,

32(2):374–382, apr 1985. 1

[7] Douglas Terry, Alan Demers, K. Petersen, M.J. Spreitzer, M.M.

Theimer, and B.B. Welch. Session guarantees for weakly consistent repli-

cated data. pages 140 – 149, 10 1994. 2, 13

[8] Dedy Kristiadi, Ferry Sudarto, Evan Rahardja, Naufal Hafizh, Christo-

pher Samuel, and Harco Leslie Hendric Spits Warnars. Mobile cloud

123

http://arxiv.org/abs/1902.03305
http://arxiv.org/abs/1902.03305
https://arxiv.org/abs/2108.03758
https://arxiv.org/abs/2108.03758
http://arxiv.org/abs/1512.00168
http://arxiv.org/abs/1512.00168
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121

REFERENCES

game in high performance computing environment. TELKOMNIKA (Telecom-

munication Computing Electronics and Control), 18:1983, 08 2020. 2

[9] Maarten van Steen and Andrew S. Tanenbaum. A brief introduction to

distributed systems. Computing, 98:967–1009, 2016. 2, 12

[10] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. Dyconits: Scal-

ing Minecraft-like Services through Dynamically Managed Inconsistency.

In 2021 IEEE 41st International Conference on Distributed Computing Systems

(ICDCS), pages 126–137, 2021. 2, 7, 19, 22, 48

[11] Haifeng Yu and Amin Vahdat. Design and Evaluation of a Conit-Based

Continuous Consistency Model for Replicated Services. ACM Trans. Comput.

Syst., 20(3):239–282, aug 2002. 2, 16, 17, 48

[12] G. Licoppe and F. Deraedt. Calepinus novus: vocabulaire latin d’aujourd’hui.

Fondation Melissa et Musée de la Maison d’Erasme, 2002. 9

[13] David Bermbach and Jörn Kuhlenkamp. Consistency in Distributed Stor-

age Systems. In Vincent Gramoli and Rachid Guerraoui, editors, Networked

Systems, pages 175–189, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. 9, 10

[14] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing Consistency

Properties for Fun and Profit. PODC ’11, page 197–206, New York, NY, USA,

2011. Association for Computing Machinery. 10

[15] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility

of Consistent, Available, Partition-Tolerant Web Services. SIGACT News,

33(2):51–59, jun 2002. 10

[16] Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database Sys-

tem Design: CAP is Only Part of the Story. Computer, 45(2):37–42, 2012. 10

[17] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. The

Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 1992. 10

[18] Edsger W. Dijkstra. Cooperating Sequential Processes, pages 65–138. Springer

New York, New York, NY, 2002. 11

124

https://doi.org/10.1145/566340.566342
https://doi.org/10.1145/566340.566342
https://books.google.nl/books?id=L60WGQAACAAJ
https://doi.org/10.1145/1993806.1993834
https://doi.org/10.1145/1993806.1993834
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://books.google.nl/books?id=VFKbCgAAQBAJ
https://doi.org/10.1007/978-1-4757-3472-0_2

REFERENCES

[19] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed

System. Communications of the ACM 21, 7 (July 1978), 558-565. Reprinted in

several collections, including Distributed Computing: Concepts and Implementations,

McEntire et al., ed. IEEE Press, 1984., pages 558–565, July 1978. 11

[20] P.W. Hutto and M. Ahamad. Slow memory: weakening consistency to

enhance concurrency in distributed shared memories. In Proceedings.,10th

International Conference on Distributed Computing Systems, pages 302–309, 1990. 12

[21] Werner Vogels. Eventually Consistent: Building Reliable Distributed

Systems at a Worldwide Scale Demands Trade-Offs?Between Consistency

and Availability. Queue, 6(6):14–19, oct 2008. 12

[22] Eric Brewer. Towards robust distributed systems. page 7, 07 2000. 12

[23] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility

of Consistent, Available, Partition-Tolerant Web Services. SIGACT News,

33(2):51–59, jun 2002. 12

[24] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno

Preguiça, and Rodrigo Rodrigues. Making Geo-Replicated Systems

Fast as Possible, Consistent When Necessary. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and Implementation, OSDI’12,

page 265–278, USA, 2012. USENIX Association. 12

[25] Nuno M. Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai

Letia. A Commutative Replicated Data Type for Cooperative Editing.

2009 29th IEEE International Conference on Distributed Computing Systems, pages

395–403, 2009. 12

[26] J. Donkervliet. Design and Experimental Evaluation of a System based

on Dynamic Conits for Scaling Minecraft-like Environments. 2018. 19

[27] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesign-

ing Minecraft-Like Games as Serverless Systems. In 12th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 20). USENIX Association, July 2020.

19

125

https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://repository.tudelft.nl/islandora/object/uuid%3A4045d6a2-87ae-4397-8898-8e992fa0652c
https://repository.tudelft.nl/islandora/object/uuid%3A4045d6a2-87ae-4397-8898-8e992fa0652c
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet
https://www.usenix.org/conference/hotcloud20/presentation/donkervliet

REFERENCES

[28] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Mosci-

broda, Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook:

Enabling Large-Scale, High-Speed, Peer-to-Peer Games. SIGCOMM Comput.

Commun. Rev., 38(4):389–400, aug 2008. 19

[29] Michael Macedonia, Michael Zyda, David Pratt, Paul Barham, and

Steven Zeswitz. Npsnet: A Network Software Architecture For Large

Scale Virtual Environments. Presence, 3:265–287, 01 1994. 19

[30] Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios An-

dreadis, Erwin van Eyk, Tim Hegeman, Sacheendra Talluri, Vincent van

Beek, and Lucian Toader. Massivizing Computer Systems: A Vision to

Understand, Design, and Engineer Computer Ecosystems Through and Be-

yond Modern Distributed Systems. In 2018 IEEE 38th International Conference

on Distributed Computing Systems (ICDCS), pages 1224–1237, 2018. 22

[31] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Professional, 2004. 23

[32] Jianwei Zhang and Antonio Vallecillo. Realizing Model-Driven Web

Engineering with Event-Driven Architecture. Journal of Web Engineering,

13(56):383–409, 2014. 23

[33] Zohaib Mehdi, Naveed Ahmed, and Babar Shahzad. Scalability in event-

driven architecture. In 2018 IEEE International Conference on Software Architec-

ture (ICSA). IEEE, 2018. 23

[34] Jun Narkhede, Neha Shapira, and Jay Jain. Apache Kafka: A Distributed

Streaming Platform. Confluent Inc., 2017. 26

[35] Apache Kafka. Semantics - Apache Kafka. https://kafka.apache.org/

documentation/#semantics, 2012. Accessed May 23, 2023. 27, 48

[36] Julien Kervizic. Real-time Data Pipelines — Complexities Considerations,

December 2020. Accessed: 2023-05-25. 31

[37] Michael Stonebraker, Uundefinedur Çetintemel, and Stan Zdonik. The

8 Requirements of Real-Time Stream Processing. SIGMOD Rec., 34(4):42–47,

dec 2005. 32

126

https://doi.org/10.1145/1402946.1403002
https://doi.org/10.1145/1402946.1403002
https://www.confluent.io/wp-content/uploads/confluent-kafka-definitive-guide-complete.pdf
https://www.confluent.io/wp-content/uploads/confluent-kafka-definitive-guide-complete.pdf
https://kafka.apache.org/documentation/##semantics
https://kafka.apache.org/documentation/##semantics
https://medium.com/analytics-and-data/real-time-data-pipelines-complexities-considerations-eecad520b70b
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1107499.1107504

REFERENCES

[38] S.D. Kuznetsov, P.E. Velikhov, and Q. Fu. Real-Time Analytics: Benefits,

Limitations, and Tradeoffs. Program Comput Soft, 49(1):1–25, 2023. 32

[39] Douglas C. Schmidt and Carlos O’Ryan. Patterns and performance of dis-

tributed real-time and embedded publisher/subscriber architectures. Jour-

nal of Systems and Software, 66(3):213–223, 2003. Software architecture – Engineering

quality attributes. 33

[40] Microsoft. Publisher-Subscriber pattern - Azure Architecture Center |

Microsoft Learn, December 2022. Accessed: 2023-05-16. 33

[41] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Distributed

Systems and Ecosystems. In 2019 IEEE 39th International Conference on Dis-

tributed Computing Systems (ICDCS), pages 1765–1776, 2019. 39, 43, 54

[42] Jesse Donkervliet. Design and Experimental Evaluation of a System based

on Dynamic Conits for Scaling Minecraft-like Environments. 2018. Accessed:

2023-05-25. 49

[43] Jay Keps. Benchmarking Apache Kafka: 2 Million Writes Per Second (On

Three Cheap Machines). Accessed: 2023-08-18. 105

127

https://doi.org/10.1134/S036176882301005X
https://doi.org/10.1134/S036176882301005X
https://www.sciencedirect.com/science/article/pii/S016412120200078X
https://www.sciencedirect.com/science/article/pii/S016412120200078X
https://web.archive.org/web/20220116134825/https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://web.archive.org/web/20220116134825/https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
http://resolver.tudelft.nl/uuid:4045d6a2-87ae-4397-8898-8e992fa0652c
http://resolver.tudelft.nl/uuid:4045d6a2-87ae-4397-8898-8e992fa0652c
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Main Contributions
	1.4 Structure of the Thesis
	1.5 Societal Relevance

	2 Background
	2.1 Introduction to Consistency
	2.2 The Conit Consistency Model
	2.3 Dyconits

	3 Requirements Analysis for Dyconit Systems in Event-Driven Systems
	3.1 Introduction to Event-Driven Systems
	3.2 Methodology for Requirement Analysis
	3.3 Real-World Use Cases of Event-Driven Systems
	3.4 Communication Patterns in Event-Driven Systems
	3.5 Discussion and Implications of Dyconits in Event-Driven Architectures

	4 Design of a Generic Dyconit System for Event-Driven Systems
	4.1 Generic Dyconit Model Requirements
	4.2 High-Level Overview of the Generic Dyconit System
	4.3 Components of the Dyconit System
	4.4 Design of Consistency Bounding
	4.5 Dynamic Policies
	4.6 Real-time Interactive System Support
	4.7 Consistency Model Classification
	4.8 Design Process and Alternatives

	5 Integrating the Generic Dyconit System in to Event-Driven Systems
	5.1 The Implementation of Hestia
	5.2 Implementation Choices
	5.3 Implementation Challenges

	6 Evaluation of the Performance of a Generic Dyconit System: Experimental Design and Results
	6.1 Designing Synthetic Workloads Based on Interviews with Domain Experts
	6.2 Experiment setup
	6.3 Metrics and Data Collection
	6.4 Experiment Deployment
	6.5 Experiment Configuration
	6.6 Experiment Design
	6.7 Experiment Results
	6.8 Discussion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	8 Appendix
	8.1 Email Questions to Industry Experts
	8.2 Policy Configurations
	8.3 Artifact Appendix

	References

